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INTRODUCTION
Capturing the detailed locomotory kinematics and behavior of
biological organisms plays an important role in a wide variety of
research disciplines (Fry et al., 2003; Gray, 1933; Park et al., 2001;
Pfau et al., 2005). Many studies in biomechanics, neuroethology
and developmental biology rely on the analysis of video sequences.
Such analyses stand to benefit greatly from computer vision
techniques, which can accurately and efficiently screen complex
morphometric and locomotory characteristics.

Following the pioneering work of Eadweard Muybridge
(Muybridge, 1887), scientists have developed a wide range of
methods to record and quantify animal locomotion. Many studies
have relied on tracking landmarks, such as leg joints (Full and Tu,
1991) or markers on the animal’s body (Hedrick et al., 2004; Standen
and Lauder, 2005). However, it is not always feasible or advisable
to attach markers, e.g. during field observations or on animals that
have a mucous layer (e.g. many fish) or motile skin (e.g. horses).
In these cases, tracking the silhouette of the animal or a body part
can offer an alternative [e.g. silhouettes of ascidian larvae and
swimming fish (McHenry, 2001; Tytell and Lauder, 2002)].

Tracking swimming movements by filming the swimmer’s
silhouette has a long tradition (Batty, 1984; Gray, 1933). Silhouettes
lend themselves to automatic tracking (Tytell and Lauder, 2002).
Furthermore, tracking routines can be refined by using information
about the shape of the animal or limb to be tracked [e.g. insect wings
(Fry et al., 2003; Willmott and Ellington, 1997)]. Error reduction

as a result of including shape information is particularly valuable
when studying the propulsive body wave of fishes. The exact shape
of a fish’s body wave depends on the interaction between the solid
body of the fish and the surrounding water. Exact knowledge of the
wave shape can provide valuable insight into swimming performance
and the interaction between undulating body and surrounding water
(Cheng and Pedley, 1998; McHenry et al., 1995; Wainwright, 1983).
For example, the stiffness of the fish’s body affects the shape of
the body wave and thereby influences the propulsive performance
of the fish. An interesting case study is presented by the stocksteif
mutation in zebrafish, which is characterized by an overossification
of the notochord. The axial skeleton of these mutants is a stiff, bony
rod, contrasting the flexible series of articulating vertebrae in their
wild-type siblings.

The zebrafish has long served as a convenient model to study the
various aspects of fish swimming (Fuiman and Webb, 1988; Thorsen
et al., 2004). Automated tracking and analysis systems have been
previously developed for zebrafish (Bang et al., 2002; Blaser and
Gerlai, 2006). However, these systems track the fish only as a point
and cannot quantify body wave kinematics of swimming. Other
studies of zebrafish swimming have manually tracked the fish to
quantify the body posture, a method that is both time-consuming
and potentially prone to subjective errors (Budick and O’Malley,
2000; McElligott and O’Malley, 2005; Müller and van Leeuwen,
2004). Tytell and Lauder used a semi-automated method to estimate
the fish midline by manually indentifying the snout and tail and
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SUMMARY
The zebrafish Danio rerio is a widely used model organism in studies of genetics, developmental biology, and recently,
biomechanics. In order to quantify changes in swimming during all stages of development, we have developed a visual tracking
system that estimates the posture of fish. Our current approach assumes planar motion of the fish, given image sequences taken
from a top view. An accurate geometric fish model is automatically designed and fit to the images at each time frame. Our
approach works across a range of fish shapes and sizes and is therefore well suited for studying the ontogeny of fish swimming,
while also being robust to common environmental occlusions. Our current analysis focuses on measuring the influence of
vertebra development on the swimming capabilities of zebrafish. We examine wild-type zebrafish and mutants with stiff vertebrae
(stocksteif ) and quantify their body kinematics as a function of their development from larvae to adult (mutants made available by
the Hubrecht laboratory, The Netherlands). By tracking the fish, we are able to measure the curvature and net acceleration along
the body that result from the fishʼs body wave. Here, we demonstrate the capabilities of the tracking system for the escape
response of wild-type zebrafish and stocksteif mutant zebrafish. The response was filmed with a digital high-speed camera at
1500·frames·s–1. Our approach enables biomechanists and ethologists to process much larger datasets than possible at present.
Our automated tracking scheme can therefore accelerate insight in the swimming behavior of many species of (developing) fish.
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automatically estimating the midline from the extracted silhouette
(Tytell and Lauder, 2002). Other authors have relied on
‘skeletonizing’ algorithms that dissolve a binary image representing
the animal’s silhouette down to its midline (Cronin et al., 2005; Geng
et al., 2004; McHenry, 2001). Although this approach is automated,
it will not estimate the correct midline if other objects are present
in the binary image because it cannot distinguish between pixels that
belong to the animal’s silhouette and those that belong to a different
object. As a result, these algorithms will not correctly estimate the
fish’s body posture when there is environmental clutter such as other
fish, plants, or a hair used to initiate behavioral responses, as we did
in our recordings. Automated kinematic analysis of multiple zebrafish
larvae was recently demonstrated. However, this particluar analysis
technique utilizes an image filter that is customized for the appearance
of zebrafish larvae of a specific age (Burgess and Granato, 2007).
This technique does not extend nicely to zebrafish of different ages,
other fish species, or when environmental clutter is present.

Here, we present a complete method for accurately and efficiently
quantifying the body posture of zebrafish and other organisms with
symmetric medial profiles. Our approach directly models the shape
of the animal and utilizes locations of high contrast in the image to
estimate its posture. The posture estimate is calculated using
techniques that remain robust to clutter. The detailed swimming
motion is estimated based on dorsal images of the fish recorded at
sufficiently high frame rate (Harper and Blake, 1989), which
enables a quantitative evaluation of the animal’s kinematics and
dynamics (provided the mass distribution of the animal is known).
In the first section, we review the overall approach for performing
model-based visual tracking. Subsequently, we develop a detailed
geometric model for the zebrafish, including appropriate motion and
measurement models that use information from the previous and
current frame to estimate the fish’s current position and posture.
Finally, we demonstrate the capabilities of our tracking approach
on zebrafish performing an escape response at three stages during
their development (from larvae to juvenile).

MATERIALS AND METHODS
Zebrafish (Danio rerio Hamilton 1822) eggs were collected after
mating one stocksteif heterozygous female with one stocksteif
heterozygous male. The batch of eggs contained both stocksteif
mutant and wild-type embryos, but the mutant phenotype does not
become apparent until 5 days post fertilization (d.p.f.). The embryos
were reared at the optimal rearing temperature of 28°C. After
hatching, the embryos were fed Paramecium (5 and 6·d.p.f.) and
Artemia (from day 7 onwards). A fast startle response was recorded
at 5, 15 and 28·d.p.f. for both wild-type and stocksteif mutant
animals using a high-speed video camera (Photron, APX RS,
1500·frames·s–1, 1024�1024 ·pixels, exposure time 1/8000·s) fitted
with a 105·mm Nikon lens. The startle responses were elicited by
touching the animals with a horse hair. We analyzed recorded
sequences from the initiation of the escape response to the moment
when the fish either leaves the field of view or ceases active
swimming. Our sequences therefore include stages 1 and 2 of an
escape response, and usually several tail beats that are part of stage
3 (Weihs, 1973) (Movie 1 in supplementary material).

Model-based image tracking and nonlinear estimation
Our goal was to quantify the body wave and swimming kinematics
of a zebrafish from video sequences recorded from a top view. First,
we built a geometric model of the zebrafish that is defined by the
vector p, which contains the parameters that encode the body wave
shape and location of the model. Then, tracking is performed by

recursively estimating the fish parameters pk from measurements in
the image, zk at time step k. This tracking approach is formulated
within a discrete time (k), dynamic state space, framework as:

pk = f(pk–1, ξk–1)·, zk = h(pk, νk)·, (1)

where f is the motion model, h is the measurement model and ζk and
νk are independent and identically distributed noise processes (models
of the noise present in our image sequence). From a Bayesian
perspective, this corresponds to estimating the probability density
function P of the fish parameters given all of the image measurements
up to the current time step (i.e. the posterior) via Bayes’ rule:

P(pk|z1:k) = [P(zk|pk)P(pk|z1:k–1)] / P(zk|z1:k–1)·. (2)

The optimal estimate of the fish’s shape and position will then
correspond to the conditional mean of this probability density
function, pk=E[pk|zk]=�pkP(pk|z1:k)dpk. In general, this recursive
solution to the tracking problem is intractable and approximate
solutions must be used instead. These approximation methods can
primarily be broken into two categories: those that assume the
probability density functions are normal distributions [e.g. Kalman
Filters (van der Merwe and Wan, 2003)] and those that allow the
probability density functions to assume arbitrary distributions [e.g.
particle filters (Doucet et al., 2001)]. Although particle filters are
able to solve very general estimation problems, there are many
problems within visual tracking when the normal assumption holds,
in which case Kalman filters provide accurate solutions and
computational efficiency. The present study demonstrates that the
normal assumption holds for estimating the location of zebrafish
from top view images within a constrained laboratory that contains
few environmental occlusions, hence we adopt Kalman filtering.

Recently, the Kalman filter has been considerably improved by
statistical linearization and now performs well when applied to
nonlinear motion and measurement models (Ito and Xiong, 2000;
van der Merwe and Wan, 2003; Nörgaard et al., 2000; Sibley et al.,
2006). These Sigma Point Kalman Filters (SPKF) recursively
estimate the optimal fish parameters and their uncertainty by taking
the weighted average of a set of regression points drawn from the
probability density function that describes the fish’s shape and
location at the previous time step. In this study, we leverage the power
of SPKFs to solve our nonlinear estimation problem. However, in
order to estimate the fish parameters, we must also develop equations
for the motion model f and the measurement model h that make sense
for a swimming zebrafish during development. In the following
sections we apply a two-step approach. First we construct a flexible
geometric model of a zebrafish outline. Second, we develop
appropriate motion and measurement equations for this model, which
are used in conjunction with the SPKF to automatically optimize the
fish parameters based on the processed image data. 

Geometric modeling
The motion of zebrafish in the shallow water of a tank is largely
planar, so we model the fish motion as restricted to two dimensions
and assume orthographic projection in the camera model. We also
assume that the zebrafish maintains a constant length and width profile
during swimming. Therefore, we model the centerline of the fish as
a planar, inextensible curve, which can only undergo bending. The
body shape can therefore be described effectively by the bend angle
Θ of the fish as a function of distance along its length, u. This function,
Θ(u), is finitely parameterized using a linear combination of known
basis functions where Φk

j(u), is the jth basis function of order k. The
current implementation uses eight (NΘ=8) periodic cubic B-splines
as the basis functions, which we found to be sufficient to capture the
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different bending modes of the swimming zebrafish and mating
Caenorhabditis elegans (Fontaine et al., 2006). Other choices in the
order and number of basis functions are possible. However,
determining the minimum set of basis functions needed to describe
all possible fish configurations is beyond the scope of this study. To
increase the tracker’s robustness and accuracy, our model assumes
that fish have a stiff head. This assumption prevented the tracker from
creating unrealistic bending deformations in the head region. This
simplification is based on our experimental results (Müller and van
Leeuwen, 2004), which show that the head region of freely swimming
zebrafish undergoes negligible bending (zero local curvature). This
corresponds to Θ(u) remaining constant in the head region, which we
define as starting at the snout and extending to 20% of the fish’s body
length (length from snout to tail tip or caudal penduncle in the case
of juvenile fish, see Fig.·5); in other words, the relative length of the
stiff head region compared with the total length of the fish L is γ=0.2.
We kept γ fixed for our experiments and found that γ=0.2 provided
good tracking results in all three considered age groups. We
implemented the head region mathematically by defining the origin
of u (where u is zero) at a distance of 0.2·L behind the snout, such
that the head region is described by positive u values (0≤u<0.2L) and
the tail region by negative u values (–0.8L<u≤0). This approach
simplifies the formulation of the basis functions Φk

j(u) and the
corresponding local bend amplitudes αj along the fish’s body:

(3).Θ(u) =

α jΦ j
k (u) u ≤ 0

j=1

N Θ

∑

α jΦ j
k (0) u > 0

j=1

N Θ

∑

⎧

⎨

⎪
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⎩

⎪
⎪

 

Fig.·1B illustrates these concepts, i.e. the definition of u as well as
how the B-spline basis functions describe the body wave. The spline
bases have local maxima in the tail region, but become constant in
the head region.

Our complete fish model is a symmetric planar mesh with grid
parameters u and v, which define a local coordinate frame in the
fish body in the length and width directions, respectively. The points
in this mesh [x(u,v) y(u,v)]T are continuous functions of u and v, so
we can evaluate them at whatever discrete grid we choose. For our
experiments, we sample 30 uniformly spaced points in the domain
[–(1–γ)L, γL] for u and three uniformly spaced points in the domain
[–1, 1] for v. Because the number of sampled points in the (u,v)
grid remains constant during tracking, the mesh points that make
up our fish model become functions of the position and shape
parameters, p. We construct the centerline of our symmetric mesh
by integrating the unit tangent vector e1 along the grid parameter
u, and the width is created by expanding the centerline in the
direction of the normal vector e2 according to the value of R(u),
which is the fish’s width as a function of distance along its length.
R(u) is defined as a fourth-order periodic B-spline function using
20 basis functions, and its value is calculated from the first frame
of the video recording (see ‘Initial detection of zebrafish’) and held
fixed during tracking. This process is illustrated by Fig.·2 and further
details are provided in the Appendix. We denote the complete fish
model as H(p) where p[α�T]T are the fish parameters, which include
the bend angle amplitudes α� defined earlier and T, the global
translation vector of the entire fish.

Creating deformable models based on medial profiles has been
used in segmentation problems in medical imaging (Hamarneh and
McInerney, 2001) and for tracking multiple C. elegans from
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microscopy images (Fontaine et al., 2006; Roussel et al., 2007).
Because zebrafish are laterally symmetric about their body axis, our
medial profile representation offers several advantages for the
tracking framework. Each B-spline basis function is defined only
over a subregion of the fish body. Therefore, the local bend
amplitudes, αj, have local control over the degree of bending in the
body. This property is analogous to the fish anatomy, where
contractions of individual muscles affect the bending over subregions
of the fish’s body. In summary, our parameterization of the
centerline has few degrees of freedom, requires no training data,
and offers a natural and anatomically sound way to constrain the
fish’s length and designate certain regions as stiff.

Motion model
The motion model of the fish predicts the fish parameters at the
current time step based on the parameters calculated at the previous
time step. By predicting the motion, it provides a better initial
estimate of the fish parameters before they are updated using the
measurement model. We assume that the fish movement is a
combination of undulatory motion along its body and a displacement
of the whole body along the centerline axis. The undulatory motion
of steady swimming in fish consists of a traveling wave of increasing
amplitude from head to tail. Given our model of the zebrafish, this
motion is governed by the change in local bend amplitudes, αj, from
the previous time step to the current one. Given that our video
sequences are filmed at a sufficiently high frame rate, we make the
assumption that the current local bend amplitudes are equal to the
previous ones plus a random variable drawn from a zero mean
normal distribution. This is a simple way to allow in the model that

we are more uncertain about the body wave shape of the fish since
it has moved between frames. We further assume that the fish has
constant velocity, η1, between frames during displacement along
its body axis that is corrupted by acceleration noise, η2. This velocity
is also estimated and thus incorporated into the set of fish parameters
p=[α�Tη1]T. The complete motion model calculates the current fish
parameters after the fish has undergone a total axial displacement
of η0=η1Δt+η2(Δt2/2) from the previous frame, where Δt is the time
step between subsequent frames (inverse of the camera frame rate)
and η2 is modeled as a zero mean random variable drawn from a
normal distribution with fixed variance. An overview of the motion
model is shown in Fig.·3 with displacements exaggerated for
illustration purposes.
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Fig.·3. Illustration of motion model of the fish. We assume that the total
motion between frames k–l and k can be decomposed into undulatory
motion and axial displacement. Note that figure displacements are
exaggerated for illustration purposes. Actual motion between frames is
much smaller due to the high frame rate of the camera.

- Detected edge points

A B

Fig.·4. Measurement model for matching zebrafish images. (A) Initial
estimate of the model location (white broken line) with matching edge
feature points, ri (black filled, white circles). Red lines denote the 1D search
regions for edge points. Note the tail is initially not matched to the
boundary. (B) Final estimate of the model after four iterations. Although
some error is present between the outline of the model and the actual fish,
the centerline is accurately estimated based on visual inspection. Errors in
the outline are due to small out of plane motions of the fish.

No edge 
measurements

Fig.·5. At age 28 days, the fish has fully developed pectoral and caudal
fins, which can cause incorrect model fitting if they are mistakenly classified
as part of the boundary. To address this, we modify the juvenile fish model
so that it does not take edge measurements in the pectoral and caudal
regions.
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Fig.·6. (A,B) Illustration of the initialization process used in the fish tracker.
(A) The initial fish centerline (white), C(u), is estimated from the left (blue)
and right (red) fish outlines. (B) This is used to estimate the width profile
R(u) from the raw pixel data, BR and BL. Our modeling approach assumes
a symmetric fish. Figure is zoomed into the head region because R(u) and
pixel data are indistinguishable in the tail region.
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Measurement model
The present tracker system assumes that we are able to measure
the location of the fish boundary, so our measurement model
consists of the boundary points, qi=[xi yi]T, along with their
outward normal vectors, ni=[ni

x ni
y]T along the fish’s outline. In

order to fit our geometric model to the image at each frame, we
must take the appropriate image measurements and match them
with corresponding locations in the model. To achieve this, we
first segment the image using background subtraction, which
produces a binary image that is used to search for edges. Next,
we apply a one-dimensional edge-detector filter in the direction
normal to the boundary at each of the boundary points in the fish
model (Blake and Isard, 1998). The distance between qi and the
corresponding detected edge point, ri, is projected onto ni so that
the error minimized by the SPKF is the normal displacement
between the edge points and model points. This process is
illustrated in Fig.·4 where the initial estimate, edge points, and
final solution are overlaid on an actual image. By using the SPKF,

we minimize this error to obtain an updated estimate of our fish
parameters pk (see Appendix for details). At age 28 days, the
zebrafish has fully developed pectoral and caudal fins. These fins
can cause incorrect tracking because the lighting conditions can
make them appear as solid as the fish’s body. However, by
modifying the fish model to not take edge measurements in the
pectoral and caudal regions, we are able to accurately estimate the
body posture of the juvenile fish (Fig.·5).

Initial detection of zebrafish
Any tracking algorithm relies on an initial estimate of the object
location. To achieve this, we have developed a semi-automated
initialization routine that operates on the first movie frame and
extracts three important pieces of information for tracking: (1) an
estimate of the background image, (2) the initial fish parameters p0,
and (3) the width function R(u). The background model is estimated
by selecting a region around the fish and erasing it using the built-
in MatlabTM function ‘roifill’, which smoothly interpolates inward

1 mmD 1 mmF

1 mmA 1 mmB 1 mmC

1 mmE

Fig.·7. (A–F) Tracking results
for zebrafish at (A,D) 5·d.p.f.,
(B,E) 15·d.p.f. and (C,F)
28·d.p.f. (see Movie 1 in
supplementary material). The
first row are wild type and the
second row are stocksteif
mutants. The raw centerlines
estimated by the tracker are
plotted at 1.3·ms intervals for
5 and 15·d.p.f. and 2.7·ms
intervals for 28·d.p.f. Magenta
and yellow trajectories
indicate the paths of the tail
and snout, respectively. Note
in (C,F) that the caudal fin is
not modeled in our current
approach, so its motion is
disregarded.
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from the pixel values on the boundary of the user-defined region.
Next, the background image is used to segment the first movie frame,
and the MatlabTM function ‘bwboundaries’ calculates the fish
boundary from the resulting binary image. The user is then requested
to click on the snout and tail locations of the fish, which allows us
to divide the boundary into the left and right discrete boundaries of
the fish denoted BL(i) and BR(i), respectively.

The initial centerline of the fish will be the curve that is
equidistant from the left and right boundaries. To determine this
centerline, we use a modification of the integral area distance used
in (Roussel et al., 2007) which iterates and converges to the fish
centerline. Our method works by first finding the closest point in
BL to each point in BR and vice versa. Then, we calculate the median
locations between each set of corresponding points in BL and BR.
These median locations are assigned as the new left and right
boundaries and this process is repeated until the boundaries converge
onto the true discrete centerline C(i) (see Appendix for more details).

The estimated centerline curve C(u) is determined by fitting a B-
spline through the points calculated from C(i), and is illustrated in
Fig.·6A along with the original left and right boundaries it was
derived from. The bend angle function Θ(u) is calculated from C(u),
and initial bending amplitudes are calculated by projecting the bend
angle function onto the basis functions from Eqn·3 and illustrated
in Fig.·1B. Once the centerline of the fish has been calculated, we
can estimate its optimal radius function R(u) by minimizing the
normal displacement between the extracted image boundary BL,R

and the model boundary dictated by the radius function in the manner
described in Fig.·2. The result of this minimization is shown in
Fig.·6B and demonstrates that we are able to reconstruct accurately
the width profile of the fish.

RESULTS
In this section we present automated tracking results for wild-type
and stocksteif mutant zebrafish at 5, 15 and 28·d.p.f. Fig.·7 shows
the raw centerlines of the zebrafish estimated by the tracker at fixed
time intervals and demonstrates the quality of the proposed method.
Our method successfully tracks fast escape responses of fish larvae
(Fig.·7A,D) despite occasional partial occlusions [in this case, the
hair used to induce the escape response (Fig.·7E)]. Furthermore,
tracking takes an average computation time of 5.5±1.7·s·frame–1 on
a 3.0·GHz Intel® Xeon processor, which enables us to analyze large
datasets very quickly. To calculate an upper bound on the accuracy
of our tracking approach, we created a synthetic movie sequence
by rendering our model along a known trajectory. We then tracked
this synthetic sequence and measured the average error between the
known and estimated centerlines over time (Fig.·8). We were able
to localize the synthetic data within 0.5% of the body length on
average; our errors in estimating the real movie sequences will be
slightly larger because they contain additional noise sources not
present in the synthetic one.

From these centerlines, we wish to extract important kinematic
parameters to gain insight into developmental influences on the
propulsion mechanisms of swimming fish, and vice versa: the
mechanical influences on the development of the fish. One of these
parameters is body axis curvature, which provides information about
the muscle strains the fish undergoes. To measure curvature, we apply
spatial smoothing to the extracted centerlines and then apply temporal
smoothing directly to the curvature values. Spatial smoothing is
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performed by fitting a cubic B-spline curve to the extracted
centerlines, and the curvature is calculated directly from these
smoothed curves (see Appendix for details). We calculate curvature
from these smoothed centerlines instead of deriving it from the raw
centerline of our geometric model because the model contains a
discontinuity in the curvature at the location where it becomes stiff.

Temporal smoothing is performed by applying a low-pass filter
to the curvature values across time at fixed locations along the fish’s
body (we use 51 uniformly spaced points). The cut-off frequency
for the filter is chosen based on visual inspection of the magnitude
response of the curvature’s Fourier transform at each of the body
locations. Fig.·9 plots the error between the filtered and unfiltered
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centerlines and curvature values for both wild-type and stocksteif
zebrafish. With average errors around 0.1% of body length and 0.1
for the centerline and curvature, respectively, our filtering process
retains all-important information and does not compromise the
accuracy achieved by the tracker. The resulting curvature profiles
after filtering are shown in Fig.·10. Comparing stocksteif with wild
type at age 15 and 28 days (Fig.·10B,E, Fig.·10C,F) we find that
the peak curvature values of stocksteif are smaller than those of wild
type.

Analysis of swimming performance
To analyze the performance of our fish, we measure several
additional kinematic parameters. The angular acceleration is the
second temporal derivative of the fish bend angle function, �(u).
In Fig.·11, we observe similar peak angular accelerations between
wild type and stocksteif at 5·d.p.f., when the mutant phenotype
has just become manifest. However, as the fish get older, large
discrepancies appear in the angular accelerations. At 28·d.p.f., the
peak angular accelerations of the wild type are two orders of
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5 d.p.f. Fig.·11. Angular acceleration
of wild-type and stocksteif
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magnitude between the wild-
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28·d.p.f.; however, similar
values were achieved at
5·d.p.f.
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magnitude larger than that of the stocksteif. This trend is also
present in the tail beat frequency of the fish. To develop an
objective method for estimating the tail beat frequency of the fish,
we calculated the Fourier transform of the curvature values during
continuous swimming at equally spaced locations along the fish’s
body. This approach does not rely on determining the tail’s lateral
displacement from a mean path of motion, and is therefore
invariant to the spatial trajectory of the fish. The time period of
continuous swimming was manually determined by inspecting the
curvature profiles for regions where wavespeed remained relatively
constant (see Fig.·10). Fig.·12 plots the magnitude of the frequency
response along the body axis of the fish. For all fish, the body
axis position at approximately 90% posterior to the snout has the
largest frequency response. The tail beat frequency f is calculated
by taking a weighted average of the frequencies with the maximum
response at each location along the fish’s body axis (see Appendix
for precise definition). Again, similar tail beat frequencies are
observed at 5·d.p.f. However, the 15 and 28·d.p.f. stocksteif have
smaller tail beat frequencies than the wild type. We estimate the
curvature wave speed by performing a linear fit to the points of
zero curvature during continuous swimming (see Fig.·10), and then
calculate the resulting wavelength given the tail beat frequency
provided by the Fourier analysis using Eqn·A7. A summary of
these values is provided in Table·1.
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Fig.·12. The magnitude of the
curvatureʼs Fourier transform
during continuous swimming.
The characteristic swimming
frequency for each fish is
calculated by taking a weighted
average of the maximum
frequency responses along the
length of the fish. At 5·d.p.f., the
fish have similar swimming
frequencies. However, at 15 and
28·d.p.f., the stocksteif have
slower swimming frequencies
than the wild type. In addition,
the 28·d.p.f. stocksteif primarily
has undulations in the posterior
40% of its body due to its stiffer
vertebrae.

Table·1. Summary of kinematic parameters for wild-type (wt) and
stocksteif (stkf) zebrafish at different ages

Age (d.p.f.) L (mm) f (s–1) c (s–1) (R2, number of points) �

5
wt 3.4 73 115.0 (0.98, 51) 1.15

83.2 (0.98, 52)
55.2 (0.99, 60)

stkf 3.4 74 87.5 (0.99, 55) 1.21
87.5 (0.99, 55)
92.9 (0.98, 53)

15
wt 5.0 71 80.1 (0.99, 56) 1.13

79.3 (0.96, 57)
81.1 (0.98, 54)

stkf 5.4 36 42.9 (0.99, 59) 1.18
42.1 (0.98, 56)

28
wt 9.7 24 28.8 (0.98, 62) 1.12

24.6 (0.99, 58)
stkf 9.4 12 15.7 (0.95, 85) 1.22

13.6 (0.98, 91)

L, bodylength; f, swimming frequency; c, wave speed; �, average
wavelength. 

Each wave speed calculation represents a different linear fit performed in the
region designated as continuous swimming in Fig.·10.
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Typical measures of escape swimming performance include
displacement, speed, and acceleration of the fish center of mass
(COM) when stretched straight (Domenici and Blake, 1997; Walker,
1998). To estimate the location of the COM, we reconstructed the
fish volume from dorsal and lateral photographs assuming an elliptic
cross-section (McHenry, 2001) (see supplementary material
Figs·S1–S3). The center of volume (COV) and center of area from
the dorsal view (COA) were calculated. The COV will correspond
to the COM assuming the fish has uniform density. COV calculations
were only performed on wildtype zebrafish for comparison with
published literature on escape responses. However, COV calculations
do not lend themselves to high-throughput analysis because separate
photographs of each individual fish must be acquired to account for
the variation in morphometry for fish at a given age (very large
variation exists for the stocksteif at a specific age). Instead, we propose
to use the COA as a location for comparison between wild type and
stocksteif because it is easily measured from the video sequence and
has similar speed and acceleration profiles to the COV (see Fig.·13).
Fig.·S4 in supplementary material demonstrates that the COA
location has a maximum deviation of 5–6% body length from the
COV at age 5 days and the deviation decreases as the fish gets older.
Fig.·13 illustrates the results of these measurements. Speed and
acceleration are calculated using the MSE spline method (Walker,
1998). The stocksteif consistently exhibits lower peak acceleration
and speed compared with wild type at each age. Although these
preliminary measurements indicate consistent discrepancies between
the wild type and stocksteif due to the stiffer vertebral column present
in the mutant, a larger sample must be analyzed to produce
statistically significant results, such an analysis will be presented in
our next paper.

DISCUSSION
We have presented a method for estimating the body posture of
zebrafish within laboratory environments using flexible geometric
models and nonlinear estimation. Given the generalized
mathematical framework used to model the fish’s appearance, this
method should track any fish species with a symmetric medial profile
and that swims by undulating the body. The discrete time, dynamic
state, space model also provides a general framework for performing

statistical inference that is robust to outliers and enables tracking
during partial occlusions. This is a strong improvement over
previously developed methods that are either manual (Budick and
O’Malley, 2000; McElligott and O’Malley, 2005; Müller and van
Leeuwen, 2004), require a perfectly segmented image with no
environmental clutter (Cronin et al., 2005; Geng et al., 2004;
McHenry, 2001), or are customized for fish of a specific size and
appearance (Burgess and Granato, 2007).

The assumption of planar motion is a limitation in the proposed
method, which arises directly from the recorded material – top-view
shots with a single camera. For behaviors that contain large out-
of-plane motions, the geometric model will not accurately represent
the appearance of the fish. For such behaviors, a 3D version of
our model-based tracker would be required; our principle is sound,
but should be extended. The tracker may also fail if a significant
portion of the fish becomes completely occluded by environmental
clutter (e.g. the entire head). Nevertheless, this could be improved
by extending the algorithm to use a more advanced nonlinear
estimator, a more advanced motion model, or a direct model of
the occlusions. However, in laboratory settings, where many
environmental parameters are controlled, this technique represents
an accurate and fully automatic approach to quantify behavior and
will facilitate studies requiring the analysis of many and long image
sequences.

In addition to traditional swimming performance indicators we
explored two new ways of analyzing the kinematics data: by plotting
the angular acceleration as a function of time and the frequency
response along the body. We also used more objective mathematical
definitions and corresponding algorithms to quantify standard
variables such as tail beat frequency, wave speed and length. The
center of area (COA) of the fish dorsal view was proposed as a valid
location for comparison between wild-type and stocksteif fish because
its ease of measurement lends itself to high-throughput analysis. Our
preliminary comparison between wild-type and stocksteif swimming
performance indicators already suggest significant differences. Hence,
this preliminary data analysis of swimming fish illustrates the
capabilities of the automatic fish tracker and bodes well for gaining
a complete understanding of how stiffness of the vertebral column
affects swimming performance.

E. Fontaine and others
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APPENDIX
Here, we present some of the detailed equations related to the
geometric, motion and measurement models used in our approach
for tracking zebrafish. The tangent and normal vectors of the model’s
centerline are:

and the complete fish model is given by:

where Θ(u) is defined in Eqn·3, H(p) is the complete fish model,
and β is a constant scaling term (pixels·mm–1) to scale the model
to the appropriate size depending on the camera magnification. For
our experiments, the scaling term β is calculated from the test image
of a calibration grid.

The equations for our motion model predict the current fish
parameters given the previous ones. The noise vector ξ=[Δα�ΔTη2]T

is included in the motion model to account for the uncertainty in
the fish parameters, and is drawn from a zero mean multivariate
normal distribution with fixed diagonal covariance:

Here, Φ(u) is a NΘ dimensional row vector of B-spline bases and

is a s by NΘ matrix of B-spline bases evaluated at s sampled grid
points in u (we set s=30). The predicted local bend amplitudes are
calculated by projecting onto this basis in the domain of displacement
u+η0, calculating the new Θ(u+η0), and projecting back onto the
original basis, Φ(u). Likewise, the predicted translation is calculated
by integrating the tangent vector over the axial displacement.

The measurement model minimizes the normal displacement
between the model boundary points q and the edge feature points
r detected in the current image. We use the SPKF to minimize the
error E=G�nT(q–r)�2 (i.e. the sum of squares normal distance), and
thus we obtain an updated estimate of our model location pk by
iterating the equation:

pi+1 = pk
– + PpzPzz

–1 [z–h(pi) – Ppz
T Ppp

–1(pk
––pi)]·, (A4)

where Pab=E[(a–a)(b–b)T] is the covariance matrix associated with
the random variables a and b and pk

– is the predicted state estimate
from our motion model. At the first iteration, pi=pk

– and after
convergence (typically 5 iterations for our system), the updated state
estimate is set to the current value, pk=pi+1. [For more detail on how
to calculate the appropriate covariance matrices using the statistical
linearization approach, see elsewhere (van der Merwe and Wan,
2003; Sibley et al., 2006).]

(A2)H ( p) = β e10

u
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The initialization process used to determine the initial shape of
the fish is described by the following pseudo-code:

while �BL
j
– BR

j � > ε
CL(i) = �BL

j
(i) + λBR

j �BL
j
(i)�� / 2

CR(i) = �BR
j
(i) + λBL

j �BR
j
(i)�� / 2

BL
j+1 = CL

BR
j+1 = CR

j = j + 1

end

We first calculate the initial left and right boundaries BL
0 and BR

0 in
a semi-automated fashion, then create a correspondence between
them using the nearest neighbor function λ, where λA(B) is the
element in A that is closest to B. Then, the computed centerlines
become the new boundaries (i.e. BL

j+1=CL, BR
j+1=CR), and the process

is repeated until the average RMS error between the boundaries is
less than a threshold (i.e. they have converged on top of each other).
Once we have found the centerline through this iterative process,
we must determine the width profile of the fish R(u)=ΛR(u)S, where
S is a 20�1 vector of control points, and ΛR is the matrix of B-
spline bases associated with the radius function. The optimal radius
function is found by minimizing the squared normal displacement
between the extracted image boundary BL,R and the model boundary
ML,R dictated by the radius function while constraining the width
profile to positive values:

subject to R(u) ≥ 0

where ML,R(ui)=C(ui)±N(ui)ΛR(ui)S and Ni is the vector normal to
C(ui) from the local Frenet frame. The result of this minimization
is shown in Fig.·6B and shows that we are able to reconstruct the
shape accurately.

We use the spatially smoothed centerlines of the fish to calculate
the curvature values directly. A planar B-spline curve has the form
γ(u)=Λ(u)X where Λ(u) denotes the s�m matrix of B-spline bases
evaluated at s sampled grid points in u, and X denotes the m�2
matrix of control points. Let t(u) and n(u) denote the unit tangent
and normal vectors to the curve γ(u), then t�(u)=κ(u).n(u) from the
geometry of planar curves. Therefore, the curvature, κ(u), can be
derived directly from the B-spline bases as follows:

The tail beat frequency of the fish is calculated as follows. Let
F[.] denote the Fourier transform of a function, and κ(u,t) the
curvature as a function of position along body axis and time. Then
Ki(ω)=�F[κ(u,t)�u=ui]� is the magnitude of the Fourier transform at
the ith location along the fish’s body, and ω j

max=arg
ω
maxKi(ω) is

(A6)
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the frequency that maximizes the magnitude response at the ith
location. The tail beat frequency f is calculated as:

using N locations sampled along the fish’s body. This is an average
frequency over the length of the body that is weighted by the
magnitude response.

LIST OF ABBREVIATIONS AND SYMBOLS
BL,R initial left and right boundaries of fish image (in pixels)
C(i) initial centerline of fish image (in pixels)
C(u) initial centerline of fish image modeled as B-spline
COA center of area
COM center of mass
COV center of volume
e1 tangent vector to fish model centerline
e2 normal vector to fish model centreline
f(.,.) motion model of zebrafish
h(.,.) measurement model of zebrafish
H(p) complete geometric model of zebrafish
L total length
ni outward normal vectors of model boundary
NΘ number of B-spline basis functions used to model centerline

bend angle
p0 initial fish parameters
pk fish parameters at the kth time step
Pab covariance matrix associated with the random variables a and

b
qi model boundary point
ri edge feature point in image
R(u) width profile of zebrafish model
T global translation vector of fish model
(u,v) grid parameterization of model mesh
zk image measurements at the kth time step
αj local bend amplitudes
α� bend angle amplitude
β model scaling term (pixels·mm–1)
γ ratio of stiff region of zebrafish model to entire length
Δt time between frames
η0 axial displacement of fish between frames
η1 axial velocity of fish between frames
η2 axial acceleration fish between frames, sampled from normal

distribution
Θ(u) bend angle of centerline in zebrafish model
λA(B) nearest-neighbor function; the element in A that is closest to B
Λ(u) s by NΘ matrix of B-spline basis functions evaluated at s

sampled grid points in u
Φj

k(u) B-spline basis function of order k
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