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The aerodynamic performance of vehicles and animals, as well as the pro-

ductivity of turbines and energy harvesters, depends on the turbulence

intensity of the incoming flow. Previous studies have pointed at the potential

benefits of active closed-loop turbulence control. However, it is unclear

what the minimal sensory and algorithmic requirements are for realizing

this control. Here we show that very low-bandwidth anemometers record

sufficient information for an adaptive control algorithm to converge quickly.

Our online Newton–Raphson algorithm tunes the turbulence in a recirculat-

ing wind tunnel by taking readings from an anemometer in the test section.

After starting at 9% turbulence intensity, the algorithm converges on values

ranging from 10% to 45% in less than 12 iterations within 1% accuracy. By

down-sampling our measurements, we show that very-low-bandwidth

anemometers record sufficient information for convergence. Furthermore,

down-sampling accelerates convergence by smoothing gradients in turbu-

lence intensity. Our results explain why low-bandwidth anemometers in

engineering and mechanoreceptors in biology may be sufficient for adaptive

control of turbulence intensity. Finally, our analysis suggests that, if certain

turbulent eddy sizes are more important to control than others, frugal

adaptive control schemes can be particularly computationally effective for

improving performance.
1. Introduction
The performance of animals, vehicles, wind turbines and energy harvesters are

all affected by turbulence in the incoming flow. Animal trajectories are dis-

rupted by turbulence over a wide range of scales: from microscopic larvae

[1–3] to gliding tree frogs [4] and hovering hummingbirds [5,6]. Turbulence

decreases the maximum airspeed of bees [7,8] and moths [9], and decreases

the swimming speed of perch [10] and creek chubs [11]. Locomotion costs in

turbulence are thought to be higher across a wide range of swimming and

flying taxa [12,13], a hypothesis that has been confirmed for hummingbirds

[6] and salmon [14]. Like similarly sized animals, micro-aerial vehicles are sus-

ceptible to turbulent flows because of their small size and slow speeds [15,16].

As a result, turbulence places significant constraints on vehicle controllers that

have yet to be overcome [16]. Turbulence also affects the potential for capturing

energy from incoming flows. Wind turbines in turbulent flows can have higher

fluctuations in power [17–19] and produce less power overall [20]. At much

smaller scales, piezoelectric harvesters rely on the energy contained in turbu-

lence, so their performance depends on the intensity and frequency content

of the incoming turbulent flow [21–23]. The dynamical system properties of

turbulence are still poorly understood, and it is unclear which algorithms can

control turbulence with minimal information [24].

One solution for controlling complex processes such as turbulence without a

model of the system dynamics is adaptive control. The goal of adaptive control

is to tune the parameters of a working open-loop controller over time scales

longer than those natural to the system being controlled [24]. A biological ana-

logue to adaptive control is the concept of motor learning, where learners

perfect movement solutions over many trials without a priori knowledge of
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the system dynamics [25]. Adaptive control has found

success over a diverse set of optimization problems: suppres-

sing flow separation over wings and diffusers [26–29],

reducing power consumption in formation flight [30], attenu-

ating noise in nozzles [31–33], reducing drag on bluff bodies

[34] and maximizing the lift or efficiency of oscillating plates,

panels, aerofoils and hydrofoils [35–37]. Adaptive control is

also used to tune controllers that then make decisions in

real time [38] and can even guide the learning of bipedal

robots [39].

In many cases, the design and effective operation of an

adaptive controller in turbulence might only require sensing

flow fluctuations over a narrow frequency band. Animals and

vehicles, for example, are more destabilized by turbulent

eddies of a similar scale to the body length [4,6,11,40,41].

Energy harvesters gain the most energy from turbulent

eddies that are tuned to their structural resonant frequency

[22,23]. When implementing noise attenuation, certain fre-

quencies of noise may carry higher penalties than others

[33]. Motivated by the importance of narrow frequency

bands, we studied the effect of sensor bandwidth on the per-

formance of an adaptive controller that operated in a

turbulent environment. Specifically, our controller tuned the

turbulence intensity in a wind tunnel. To test the effects of

bandwidth on controller performance, we first developed

an adaptive control algorithm for automatically tailoring the

turbulence intensity in the tunnel. The algorithm controlled

an active grid of spinning vanes based on information from

a high-frequency anemometer. We varied the sensor band-

width in silico by resampling airspeed data from the

anemometer. We then used simulations to study how the

number of anemometers and their sampling characteristics

influence adaptive control of turbulence. The robustness of

the adaptive controller implies that it is not only a novel

way to automatically tune turbulence in a wind tunnel, but

also a key starting point for hypotheses about flying vehicles

and animals learning to cope with turbulence.
2. Material and methods
To study how an adaptive controller operates in turbulence,

we studied the ability of an active grid of spinning vanes to con-

trol the turbulence intensity in a closed-loop wind tunnel

(figure 1a) [47]. Using a hotwire anemometer in the test section,

we measured the turbulence intensity produced by the grid. This

turbulence intensity was relayed to an algorithm which adapted

the motions of the spinning vanes until a target turbulence in-

tensity was achieved. To explore the effect of anemometer type,

we simulated the algorithm in silico using anemometers with

varying bandwidths. We also simulated the use of multiple

anemometers. Using these simulations, we tested the effect of

anemometer type and number on the convergence properties

of our adaptive control algorithm.
2.1. Turbulence generation
An active grid of spinning vanes upstream of the test section

injected vorticity into the flow by rotating 15 aluminium shafts

(seven horizontal, eight vertical, 2 cm diameter, 10 cm spacing),

each actuated independently by a motor-encoder assembly

(Maxon RE 40 þ GP 42 þ HEDL 5540). Affixed to each shaft

were diamond-shaped aluminium vanes (10 cm diagonal,

10 cm spacing, 2 mm thickness): nine vanes on each horizontal

shaft and six vanes on each vertical shaft. The vertical vanes
generated constant blockage by remaining stationary at a speci-

fied angle, a, relative to the zero position (parallel to the flow).

By contrast, the angle of the horizontal vanes oscillated around

the zero position with a given maximum angular velocity, v,

and amplitude, u. The design of the grid and its generalized

motion patterns were based on a similar grid using open-loop

control developed by Cekli et al. [48,49].

2.2. Adaptive control algorithm
To measure turbulence levels produced by the grid, we placed a

hotwire anemometer (Dantec 55P16; CTA module Dantec

54T42; 10 kHz; sensitivity length � 800 mm) 1 m downstream of

the grid in the test section (0.8 � 1.0 � 1.7 m) to measure the tur-

bulence spectrum. Further details on the measurement set-up can

be found in the electronic supplementary material, SM1.1. What

differentiates our active grid set-up from others [48,49] is that

the anemometer relays the streamwise flow speed, u(t), to our

model-free adaptive control algorithm (programmed in LabVIEW

2015 SP1) with a time delay of approximately 0.1 ms. The

measured turbulence intensity is used to iterate and execute

motion commands (v, u, a) for the active grid with an additional

time delay of approximately 0.02 ms. The goal of the algorithm is

to seek out a prescribed streamwise turbulence intensity,

q ; �urms=�u, where �urms and �u are the root-mean-square and

time-averaged streamwise speeds, respectively.

We chose to demonstrate the robustness of our technique by

using a simple, well-established adaptive control algorithm. The

algorithm is a multi-dimensional variant of the linear model-free

Newton–Raphson method [50] (figure 2a). The method seeks

zeros of a scalar function, f, defined as the difference between

the measured turbulence intensity, q, and the desired turbulence

intensity, q0,

fðXiÞ ¼ qðXiÞ � q0,

where Xi ; kvi, ui,ail is a vector describing the current state in v–

u–a space. The measured intensity at state Xi, q(Xi), is based on

15 s of data sampled at 10 kHz by the anemometer. The accuracy

provided after a certain sampling time depends on wind speed

and turbulence levels; we chose 15 s because it ensured that

the variation in mean intensity was reduced below measurement

noise for all the speeds and turbulence levels we considered. At

each iteration of the algorithm, a new state Xi þ 1 is determined

from the current state Xi using the relation

Xiþ1¼ Xi � b fðXiÞ
rfðXiÞ
jrfðXiÞj

,

where b is a prescribed relaxation parameter. To decrease

convergence time, we estimated rf with a first-order

forward finite-difference scheme with constant step sizes. For

example, the first component of rf , that is, the v-derivative of

f, is approximated as

@f
@v

(Xi) �
f (vi þ Dv, ui, ai)� f(vi, ui, ai)

Dv
,

and the u- and a-derivatives are approximated in an analogous

way. The search continues until the measured turbulence

intensity meets the convergence criterion,

jqðXiÞ � q0j , e,

where e is a prescribed tolerance that sets the precision of the

intensity to which the algorithm converges.

2.3. Tuning the adaptive control algorithm
The domains for v, u and a are limited by the physical properties

of the servomotors and the maximum allowable blockage in the

wind tunnel, leading to a bounded domain of [v, u, a] [ [100,

1500] r.p.m. � [0, 35]8 � [0, 90]8. The step sizes were chosen to

http://rsif.royalsocietypublishing.org/
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Figure 1. An active grid consisting of spinning diamond-shaped vanes produces turbulence in a recirculating wind tunnel of which the intensity can be controlled.
The contribution of some eddy scales to this intensity may be more critical to control than others. (a) Schematic of the wind tunnel and the active grid with
horizontal (red) and vertical (blue) motor-driven diamond-shaped vanes. To generate turbulence by injecting vorticity in the flow, the horizontal vanes oscillate
with amplitude u at maximum angular velocity v, whereas the vertical vanes are fixed at an angle a. (b) A representative energy spectrum (E, grey) of the
turbulent flow generated by the grid. The streamwise velocity sample was recorded for 120 s at 10 kHz (grid motion; v ¼ 600 r.p.m., u ¼ 238, a ¼ 688).
For reference, we plot a 25/3 power law to show the expected inertial regime scaling (dashed line, [42]). The per cent of the energy (%E, blue) shows the
per cent of the turbulent kinetic energy captured by wavenumbers k and below. (c) Some turbulence scales can be more destabilizing than others; for example,
animals and vehicles are longitudinally destabilized by eddies with sizes comparable to their wing chord. The destabilizing intensity of turbulent eddies, I, is shown
as an approximate function of eddy size for representative flying animals and aerial robots: the pigeon and AeroVironment’s WASP III (red; wing chord � 110 mm
[43,44]) for larger eddy sizes, as well as a blowfly and Harvard’s RoboBee ( purple; wing chord � 4 mm [45,46]) for smaller eddy sizes. The shaded regions
represent the expected I range due to variation in the density ratio, a constant based on vehicle mass and wing area that ranges between 40 and 120 for typical
aircraft shapes [40]. (d ) Histograms of 800 turbulence intensity measurements (15 s at 10 kHz) taken for two different grid motions: a low-turbulence motion (left;
q ¼ 0.093, v ¼ 300 r.p.m., u ¼ 58, a ¼ 308) and a high-turbulence motion (right; q ¼ 0.322, v ¼ 800 r.p.m., u ¼ 348, a ¼ 658). The red curves show
Gaussian distributions fitted to the histograms (m, mean; s, standard deviation).
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be roughly one-tenth of the full domain length in each direction:

Dv ¼ 150 r.p.m., Du ¼ 48 and Da ¼ 108. The domain for v
excludes 0 r.p.m. to prevent the algorithm from getting stuck at

[v, u, a] ¼ [0 r.p.m., 08, 08]. When a forward difference scheme

requires values outside the boundary, a backward finite-differ-

ence scheme with the same step sizes is used instead. If the

algorithm outputs a value of v, u or a outside its domain, that

value is coerced to the nearest boundary value.

A relaxation parameter b ¼ 1/3 and tolerance e ¼ 0:005 were

chosen based on experimental data. For the Newton–Raphson

method to converge, the relaxation parameter b must be tuned

such that bjrf j=jrf jmin , 2 over the search domain, where

jrf jmin is the minimum value of jrf j [51]. To guide our tuning

process, we measured turbulence intensity over a 5 � 5 � 5

grid of v, u and a values that spanned the full domain

(figure 2b) using 120 s of data sampled at 10 kHz. The measured

turbulence intensity was stable after 15 s, but we used 120 s to

provide extra data for simulating lower bandwidth sensors and

arrays of sensors later. We wanted to simulate five decades of

sampling time (0.001 s up to 100 s), so we chose 120 s of

sampling to give us sufficient data. To estimate the gradient in

bjrf j=jrf jmin, we used a slower but more accurate fourth-order

compact finite-difference scheme [52] (electronic supplementary

material, SM1.3), and we found that b ¼ 1/3 was sufficient for
ensuring bjrf j=jrf jmin , 2. This relaxation parameter also

ensured that coercion to boundary values was rare (approxi-

mately once every 1000 steps). A tolerance of e ¼ 0.005 was

found to be roughly the minimum tolerance possible based on

the standard deviations of turbulence intensity at each grid

point. Further details on the algorithm can be found in the elec-

tronic supplementary material, SM1.2.

To demonstrate the effectiveness and robustness of the adap-

tive control algorithm, we ran the algorithm 12 times, starting

from three different initial conditions ([v (r.p.m.), u (8), a (8)] ¼
[100, 8.3, 0], [500, 20.7, 30], [900, 33.2, 60]) and searching for

four different turbulence intensities (q0 ¼ 0.1, 0.2, 0.3, 0.4).

These initial and target conditions were chosen to span the full

domain.

2.4. Simulating the adaptive control algorithm
While turbulent velocity fluctuations can be non-Gaussian, their

average—and, therefore, the turbulence intensity—should

be Gaussian by the central limit theorem [53]. We confirmed

this prediction by checking distributions of our turbulence inten-

sity measurements (figure 1d ). This result motivated us to

simulate searches in silico (Mathematica 11) in order to overcome

the prohibitive time constraints of experimental searches. To

http://rsif.royalsocietypublishing.org/
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wise velocity, �u, as a function of u, v and a over the operational domain of the active grid. (c) Twelve experiments demonstrate that the model-free adaptive
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simulate measurements, we used a linear interpolation of

our 5 � 5 � 5 grid data (figure 2b) as a simulated function

q̂ðXiÞ that returned a turbulence intensity for any given grid

motion Xi. Perturbations, sq, were added to each simulated

measurement to model experimental noise. The perturbations

were randomly selected (RandomVariate function in Mathema-

tica) from a normal distribution with a mean and relative

standard deviation modelled after experimental observations

(0% and 10%, respectively; figure 1d ). The in silico algorithm

used the same routine as the experimental algorithm but used

simulated measurements of turbulence intensity based on our

experimental measurements, that is, it used q̂ðXiÞ þ sq in place

of q(Xi). This same perturbation method was applied to all our

in silico searches. We verified the accuracy of our in silico search

by simulating the same initial and target conditions that were

tested experimentally. Each of the 12 experimental trials was
simulated 100 000 times with different random seeds, which

showed that the number of steps until convergence was similar

between experimental and simulated trials (electronic supplemen-

tary material, table S1). Once the effectiveness of the simulations

had been verified, we used the simulations to explore the effect

of anemometer type on the performance of our algorithm.

2.5. Simulating low-bandwidth anemometers
Low-bandwidth anemometers may be sufficient for controll-

ing systems such as flying animals or vehicles, where certain

eddy sizes are more destabilizing than others [4,6,11,40,41]. For

illustration, we will highlight two particular bandwidths corre-

sponding to the most destabilizing eddy sizes for a pigeon and

a blowfly, as well as two aerial robots of similar size. Following

Fung’s statistical aircraft stability analysis [40], we estimated

http://rsif.royalsocietypublishing.org/
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destabilizing intensity, I, for the chord length of a pigeon (wing

chord � 110 mm [43]) and the similarly sized AeroVironment’s

WASP III [44], as well as a blowfly (wing chord � 4 mm [45])

and Harvard’s RoboBee [46] (figure 1c). The destabilizing inten-

sity represents the average dimensionless amplitude of a

vehicle’s plunging response to turbulent gusts with wavenumber

k [40]. The two sample bandwidths were chosen to span the

eddies with destabilizing intensities . 50% of the peak intensity

based on Fung’s analysis (pigeon: 0.57 m21 , k , 51 m21;

blowfly: 16 m21 , k , 1400 m21).

To simulate low-bandwidth anemometers, we resampled our

anemometer data in silico (Mathematica 11). Specifically, we

down-sampled our hot wire signal to frequency f and sampling

time t such that the anemometer was most sensitive to wave-

lengths between �u=f and t�u (wavenumbers 2p=(t�u) to 2pf=�u).

We call our down-sampled anemometers ‘low bandwidth’

because they can only detect a subset of the measured turbulence

spectrum. We first estimated the error that such anemometers

would introduce in a representative turbulence intensity

measurement. For this test, we down-sampled data for the grid

motion [v, u, a] ¼ [800 r.p.m., 348, 658]. That grid motion was

chosen because it yielded the highest turbulence intensity attain-

able (q ¼ 0.34) with no noticeable differences between

commanded and executed motion, and, therefore, demonstrates

the highest quantifiable expected errors. Our unfiltered datasets

(t ¼ 120 s at f ¼ 10 kHz) represent the maximum fidelity of our

set-up. To explore the effect of reducing bandwidth, we explored

sampling times and frequencies ranging from these maximum

values all the way down to nearly zero (0.001 s and 1 Hz). We

chose a 100 � 100 log-spaced grid over the domain ½t, f � [

[0.001, 100] s � [1, 10 000] Hz to give high resolution at both

low and high sampling times/frequencies.

2.6. Testing adaptive control with low-bandwidth
anemometers

We used our down-sampling approach to test our adaptive con-

trol algorithm with input from low-bandwidth anemometers.

First, we down-sampled the 5 � 5 � 5 grid data to simulate data

taken by low-bandwidth anemometers. For every bandwidth we

tested, we used a linear interpolation of the down-sampled grid

data as the function that returns turbulence intensity for a given

grid motion q̂ðXiÞ. As with all our in silico searches, we added

perturbations to each simulated turbulence intensity measure-

ment with a mean of zero and a relative standard deviation

of 10%.

We performed two sets of simulations to test the effect of

anemometer type on the adaptive control algorithm: one to test

the conditions for convergence and one to test convergence

time. The first set was designed to investigate the per cent

error required for convergence and the effect of initial condition.

For this set we used sampling times and frequencies spanning a

1000 � 1000 log-spaced grid over the domain ½t, f � [ [0.001, 100]

s � [1, 10 000] Hz. The bounds and spacing of these sampling

rates were chosen to match those used for our earlier per cent

error tests of simulated anemometers. For each t– f pairing, we

simulated 125 searches, each starting at a different point in the

5 � 5 � 5 grid and each targeting the maximum turbulence con-

dition ([v, u, a] ¼ [800 r.p.m., 348, 658]). The second set of tests

was designed to investigate the effect of anemometer bandwidth

on convergence time. For this set we explored wavenumber

bandwidths (2p=(t�u) to 2pf=�u) with five different sizes

(50, 100, 500, 1400 m21, and ‘1’ (no resampling)) and centred

on 126 different wavenumbers evenly spaced between 1 and

1000 m21. The bounds and spacing of these bandwidths were

chosen to span the full range of possible bandwidths and to

resolve the most noticeable trends in convergence time. From

the first set of tests, we found that algorithm convergence was
insensitive to initial condition. Therefore, for this second set, we

started all trials at the minimum turbulence condition ([v, u,

a] ¼ [100 r.p.m., 08, 08]) and targeted the maximum turbulence

condition ([v, u, a] ¼ [800 r.p.m., 348, 658]). Each bandwidth was

tested 10 000 times using a different random seed.

2.7. Testing adaptive control with anemometer arrays
Low sampling times lead to significant losses in accuracy, not

only because larger turbulent structures can no longer be

measured, but also because fewer samples are available to pro-

duce accurate averages. To overcome this second source of

inaccuracy, one solution is to keep the short sampling times

but increase the number of samples by averaging the results of

multiple anemometers. We explored this solution by simulating

multiple anemometers in silico. To simulate n anemometers, we

selected n random samples from the 120 s of experimental data

taken at each point in the 5 � 5 � 5 grid. The duration of each

sample was the simulated sampling time t. We ensured that

there was no overlap between the samples by segmenting the

120 s before selecting the random samples. Note that our

method assumes the frozen turbulence hypothesis [54], that is,

that the energy spectrum of spatial velocity fluctuations is directly

proportional to the energy spectrum of temporal velocity fluctu-

ations. The n samples were averaged to create a new 5 � 5 � 5

grid of turbulence intensities. To predict the turbulence intensity

for an arbitrary grid motion q̂ðXiÞ, we used a linear interpolation

of the sample-averaged 5 � 5 � 5 grid of intensities. As with all

our in silico searches, we added perturbations to each simulated

turbulence intensity measurement with a mean of zero and a rela-

tive standard deviation of 10%. For every simulated trial of

the algorithm, we compared the performance of one anemometer

(n ¼ 1) with the performance of 10 anemometers (n ¼ 10).
3. Results and discussion
Our adaptive control algorithm successfully tunes the turbu-

lence intensity in a wind tunnel using input from a hot wire

anemometer. The algorithm is sufficiently repeatable that

it can be modelled in silico. The simulations demonstrate

that low-bandwidth anemometers not only are sufficient for

convergence, but also can accelerate convergence due to

smoother gradients in the turbulence intensity function. Sys-

tems where low-bandwidth sensors may be sufficient, such

as flying vehicles or animals, may benefit from accelerated

convergence when using adaptive control.

3.1. The adaptive control algorithm converges
experimentally and can be modelled

Our adaptive control algorithm is able to converge on pre-

scribed turbulence intensities robustly. The 12 experimental

trials, which targeted intensities ranging from 10% to 40%,

all converged in 12 decision cycles or less to within 1% accu-

racy (figure 2c). The algorithm is model-free and uses

no prior information besides the tuned step sizes (Dv, Du

and Da) and relaxation parameter (b). While the raw

anemometer data are highly nonlinear, the statistics of the

anemometer data are sufficiently smooth for a linear

algorithm to ensure convergence. The implication is that

turbulence intensity can be automatically tuned by using

a computationally cheap algorithm combined with a

turbulence-generating system. Such an approach would

simplify wind and water tunnel experiments that require pre-

scribed turbulence intensities. While adaptive control has

http://rsif.royalsocietypublishing.org/
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v ¼ 800 r.p.m., u ¼ 348, a ¼ 658). The accuracy of the anemometers
is quantified by per cent error between actual turbulence intensity, q, and
the intensity based on the simulated anemometer, qs ( per cent
error ; 100%� jq� qsj=q). Both a research-grade anemometer (Dantec
MiniCTA hot wire; 10 kHz) and a hobbyist wind sensor (Modern Device
Rev P hot film; 10 Hz [55]) are predicted to produce comparable errors.
The coloured lines correspond to the different sampling times and sampling
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been used to tune processes involving turbulence [24], our

set-up is the first to demonstrate an archetypal adaptive con-

trol algorithm tuning statistical properties of turbulence such

as the turbulence intensity. Because turbulence intensity is

constant over surfaces in v–u–a space (figure 2b), our algor-

ithm converged to a point on a surface of constant turbulence

intensity. Further optimization of v, u and a within this sur-

face could potentially tune other properties of statistically

steady turbulence in addition to intensity (e.g. mean flow

speed, the energy spectrum, velocity correlations or structure

functions [54]) if desired.

Our in silico algorithm and experimental algorithm

showed similar convergence properties. From the same initial

conditions, the two algorithms took somewhat different

routes to the target turbulence intensity (figure 2c,d) but

ended on the same surfaces of constant turbulence intensity

in v–u–a space. The average convergence speeds of the

two algorithms were very similar for the 12 cases tested,

with the in silico algorithm averaging 5.7 decision cycles com-

pared with 5.8 decision cycles for the experimental algorithm

(electronic supplementary material, table S1). The turbulence

statistics are smooth enough that the convergence of the

algorithm can be modelled by treating turbulence intensity

measurements as normal distributions around a mean

value. This numerical convergence model allows us to

study the convergence properties of the algorithm without

testing every configuration experimentally, which would

require an unfeasible amount of experimental time.
 frequencies used in figure 4a, and red and purple dots show the resampling
conditions corresponding to the sample pigeon and blowfly bandwidths.
The two black lines show the numerically determined cut-off for the conver-
gence of the adaptive control algorithm with one and 10 simulated
anemometers (n ¼ 1 and n ¼ 10). To the right of the convergence line,
bandwidths lead to algorithmic convergence �99% of the time. Increasing
the number of anemometers leads to a larger area of convergence. The
greyed area shows sampling conditions that would give only one datum
point and is, therefore, not physically meaningful.
3.2. The adaptive control algorithm also converges with
low-bandwidth anemometers

In some systems, such as flying animals or vehicles, the most

destabilizing eddies are contained in a subset of the turbulence

energy spectrum [4,6,11,40,41]. We, therefore, explored the

effect of simulating low-bandwidth anemometers, that is,

those with reduced sampling frequencies and times that can

only resolve certain wavelengths of disturbance. First we con-

sider estimates of the expected per cent errors introduced by

low-bandwidth anemometers (figure 3). The per cent error is

defined as 100%� jq� qsj=q, where q is the actual intensity

and qs is the intensity provided by the simulated low-

bandwidth anemometer. Surprisingly, even low-grade flow

transducers, such as a hobbyist hot element that samples

flows at 10 Hz [55], can produce errors below 1%. For

sampling times above approximately 1 s, reducing the

sampling rate from 10 kHz down to 10 Hz had almost no

effect on the per cent error. These results are consistent

with the fact that much of the turbulence in our tunnel is

contained in large-wavelength eddies (figure 1b) that low-

frequency probes can still resolve. This claim about eddy

size— that the magnitude of the Fourier transform of velocity

corresponds to the strength of eddies with wavenumber k
(wavelength l ; 2p=k)—is a good approximation so long

as p=L , k , p=h, where L and h represent the largest

and smallest scales expected in the flow [54] (tunnel width

L ¼ 1 m and Kolmogorov scale h ¼ 100 mm gives approx.

3 , k , 30 000). Most of the bandwidths discussed here lie

within this range, so we expect the anemometers we simulate

to measure eddy sizes that correspond to the wavelengths

they can resolve. Focusing on eddies that contain the bulk

of the energy is also the central concept of large-eddy
simulation (LES), which is used to accelerate numerical simu-

lation of turbulent flow.

The low errors introduced by low bandwidths suggest that

our algorithm may still be able to converge using low-

bandwidth anemometers. Indeed, the algorithm converges

for most of the bandwidths tested (see the convergence line

in figure 3). Even a single anemometer using sampling times

as low as 0.1 s leads to convergence. At shorter sampling

times, the errors introduced are too great and the algorithm

does not converge. For example, the algorithm does not

converge when using the bandwidth tuned to measure wave-

lengths most relevant to blowflies. However, when the

algorithm is simulated with 10 anemometers (n ¼ 10), conver-

gence persists down to sampling times just under 0.01 s. Using

10 anemometers allows more anemometer types to produce

convergence, including the one tuned for a blowfly. Turbu-

lence can thus be tuned with a frugal adaptive control

algorithm based on information from a frugal anemometer,

especially if multiple anemometers are used.
3.3. Convergence is accelerated by multiple low-
bandwidth anemometers

Not only are low-bandwidth anemometers sufficient for

convergence, but in some cases they actually accelerate

http://rsif.royalsocietypublishing.org/
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convergence. To explore this result, we consider anem-

ometers spanning the full range of possible bandwidths

based on our sampling rates and times. Figure 4a shows the

number of steps required for convergence for all the anem-

ometers we simulated. When using one anemometer, our

adaptive control algorithm tends to take longer when using

lower bandwidth anemometers. For example, when starting

from minimum intensity and seeking maximum intensity,

the anemometer tuned for pigeon wavelengths requires

approximately 38 decision cycles compared with 25 decision

cycles for the full bandwidth anemometer. When using 10

anemometers, however, we see the reverse effect: lower band-

width anemometers lead to faster convergence times. All the

bandwidths we simulated led to fewer required decision

cycles when 10 anemometers were simulated. For those simu-

lated bandwidths that introduce low errors (figure 3), the

algorithm thus converges to the correct intensity in less time.

In many cases, simulating multiple low-bandwidth anem-

ometers can decrease the convergence time of the turbulence

tuning process.

The fact that resampling leads to accelerated convergence

can be explained by the convergence properties of adaptive

control. In general, extremum-seeking control algorithms

like ours are guaranteed to converge due to a separation of

time scales between the optimization loop and the system

dynamics [57]. Following Berinde [56], we note that our

search algorithm in particular converges because our error

function f is (1) monotonic, (2) locally differentiable, and

(3) sufficiently smooth, which we ensured by tuning our
relaxation parameter b. Furthermore, the speed of our con-

vergence should be proportional to jrf j=jrf jmin, where

jrf jmin is the minimum value of jrf j over the search

domain [56]. Because f is proportional to the turbulence

intensity (f ; q� q0), values of jrqj=jrqjmin should scale

with convergence speed over the search domain. The average

value of jrqj=jrqjmin, and thus the expected convergence

time, decreases for lower bandwidth anemometers when

multiple anemometers are used (figure 4b). While adaptive

control has led to most of the ‘success stories’ in closed-

loop turbulence control [24], its reason for being successful

has not been fully explained. Our results offer new math-

ematical insight into why adaptive control converges

robustly in turbulent processes and why low-bandwidth

anemometers can lead to fewer required decision cycles.
3.4. Accelerated convergence offers design
considerations for adaptive control in turbulent
flows

Wind and water tunnels are common tools for studying the

effects of turbulence on animals, vehicles, turbines and

energy harvesters. The success of our algorithm demonstrates

a new method for tuning turbulence in these tunnels with no

prior intuition for turbulence production. Traditional passive

approaches to turbulence production include routing the

upstream flow through a grid [5,7,11,58], mesh [10], or straw-

box [59], or over a cylinder [6,8,22,60–62] or an array of

http://rsif.royalsocietypublishing.org/
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cylinders [9,11]. If the goal is to produce a turbulent bound-

ary layer, fences [29] and/or roughness elements [63–65]

are often used instead. When using passive elements,

changing turbulence levels is time-consuming and can be

particularly challenging for a pressurized [66] or cryogenic

[67] facility. This can be addressed by injecting vorticity

actively using remotely controlled jets [68–71], oscillating

aerofoils [71,72], oscillating grids [2,3,51,73] or spinning

vanes [48,49,65,74–79]. Active elements allow more degrees

of freedom, but require prior intuition and manual tuning

to achieve the desired flow conditions. We have shown that

combining an active grid with adaptive control provides an

easy, systematic and precise method for tuning turbulence

intensity automatically.

The robustness of our algorithm suggests that multiple

low-bandwidth anemometers could be sufficient for adaptive

control in other engineered systems that cope with turbu-

lence. Such anemometers would be particularly effective in

systems where body-sized eddies were more important to

the system dynamics, such as the case with flying vehicles

[40,41]. While the time scales of adaptive control are by defi-

nition longer than the dynamical response times of vehicles,

adaptive control can be used to tune real-time controllers

[38,80,81] and are, therefore, relevant to vehicle learning.

Some modern flying vehicles already use arrays of low-

bandwidth anemometers for flow sensing [16,82,83]. These

sensor arrays can be, for example, shear stress sensors

embedded in a flexible skin [84], pressure ports distributed

over the body or wings [56,84–86], or hot-film sensors dis-

tributed over the wing [87]. Some sensors have narrow

frequency responses, like the microelectromechanical system

(MEMS) sensor array modelled after cricket hairs (peak

response at 75 Hz [88]). Free flights using multiple flow

sensors have been demonstrated computationally [89] and

experimentally [82], and greater attitude stability was

achieved than with traditional inertial sensing. Our results

suggest that these low-bandwidth sensor arrays could be

used when vehicles require adaptive control algorithms,

such as when tuning the gains of their real-time controllers.

Our results also form a basis for new hypotheses about

animals that cope with turbulence. Adaptive control is simi-

lar to the concepts of motor-learning [25] and reflex

evolution [90], where over time learners work to perfect

movement solutions that satisfy a set of constraints. Animals

have developed sophisticated manoeuvres for coping with

turbulence: orchid bees extend their hind legs [7], soaring

eagles use wing tucks [91] and hummingbirds stabilize

their heads with complex wing and tail movements [6].

These animals often use vast networks of mechanoreceptors
[62,92–94], some of which are tuned to particular frequencies

[95–98]. Receptors in silkworm moths, for example, have

been shown to have peak responses at 50 or 75 Hz [95].

Wind-receptor hairs of crickets show peak responses between

20 and 250 Hz due to the resonance properties of the hairs

[96]. Herbst corpuscles, which are found in the follicular

wall at the base of bird feathers [99–101], show peak

responses to stimuli between 100 and 900 Hz [97,98]. Because

stability is affected most by body-sized turbulent eddies

[4,6,11,40,41], these low-bandwidth receptors may be suffi-

cient for some motor-learning tasks. In the light of our

convergence studies, the redundancy and low bandwidth of

these sensors may even accelerate motor learning.
4. Conclusion
We demonstrate here a safe, consistent and automatic way to

tune turbulence intensity in a wind tunnel without prior

expertise. By simulating our adaptive control algorithm, we

show that frugal sensing is sufficient for tuning turbulence

intensity. Our method of tuning turbulence can, therefore,

be applied with cheap, readily available anemometers.

When we simulate multiple anemometers, we find that con-

vergence can even be accelerated by frugal sampling. This

accelerated convergence can be explained with convergence

theories for adaptive control algorithms like Newton–Raph-

son. While our algorithm is designed for vanes injecting

vorticity in a wind tunnel, its robust convergence suggests

it could be sufficient for adaptive control of turbulence inten-

sity in other turbulent flows. For example, swimming and

flying animals, vehicles, turbines and energy harvesters

could potentially use arrays of simple anemometers when

applying adaptive control in turbulence. We have thus pro-

vided an algorithmic basis for developing hypotheses about

biological and engineered systems that cope with turbulence

using adaptive control.
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Reduction of axial turbomachinery tonal noise by
means of flow induced secondary sources using an
extremum-seeking control technique.
Int. J. Aeroacoustics 6, 31 – 43. (doi:10.1260/
147547207780440776)

32. Krstic M, Krupadanam A, Jacobson C. 1999 Self-
tuning control of a nonlinear model of combustion
instabilities. IEEE Trans. Control Syst. Technol. 7,
424 – 436. (doi:10.1109/87.772158)

33. Maury R, Keonig M, Cattafesta L, Jordan P, Delville
J. 2012 Extremum-seeking control of jet noise.
Aeroacoustics 11, 459 – 474. (doi:10.1260/1475-
472X.11.3-4.459)

34. Beaudoin J-F, Cadot O, Aider J-L, Wesfreid J-E. 2006
Drag reduction of a bluff body using adaptive
control methods. Phys. Fluids 18, 085107. (doi:10.
1063/1.2236305)

35. Tuncer IH, Kaya M. 2005 Optimization of flapping
airfoils for maximum thrust and propulsive efficiency.
AIAA J. 43, 2329 – 2336. (doi:10.2514/1.816)

36. Milano M, Gharib M. 2005 Uncovering the physics
of flapping flat plates with artificial evolution.
J. Fluid Mech. 534, 403 – 409. (doi:10.1017/
S0022112005004842)

37. Izraelevitz JS, Triantafyllou MS. 2014 Adding in-line
motion and model-based optimization offers
exceptional force control authority in flapping foils.
J. Fluid Mech. 742, 5 – 34. (doi:10.1017/jfm.2014.7)

38. Killingsworth NJ, Krstic M. 2006 PID tuning using
extremum seeking: online, model-free performance
optimization. IEEE Control Syst. Mag. 26, 70 – 79.
(doi:10.1109/MCS.2006.1580155)

39. Collins S, Ruina A, Tedrake R, Wisse M. 2005
Efficient bipedal robots based on passive-dynamic
walkers. Science 307, 1082 – 1085. (doi:10.1126/
science.1107799)

40. Fung YC. 1953 Statistical aspects of dynamic
loads. J. Aeronaut. Sci. 20, 317 – 329. (doi:10.2514/
8.2634)

41. Howell LJ, Lin YK. 1971 Response of flight vehicles
to nonstationary atmospheric turbulence. AIAA J. 9,
2201 – 2207. (doi:10.2514/3.50026)

42. Kolmogorov AN. 1962 A refinement of previous
hypotheses concerning the local structure of
turbulence in a viscous incompressible fluid at high
Reynolds number. J. Fluid Mech. 13, 82 – 85.
(doi:10.1017/S0022112062000518)

43. Tobalske B, Dial K. 1996 Flight kinematics of black-
billed magpies and pigeons over a wide range of
speeds. J. Exp. Biol. 199, 263 – 280.

44. US Air Force. 2016 WASP III micro unmanned aircraft
system fact sheet. See http://www.af.mil/
information/factsheets/factsheet.asp?id=10469
(accessed 11 August 2016).

45. Combes SA, Daniel TL. 2003 Flexural stiffness in
insect wings I. Scaling and the influence of wing
venation. J. Exp. Biol. 206, 2979 – 2987. (doi:10.
1242/jeb.00523)

46. Teoh ZE, Fuller SB, Chirarattananon P, Prez-Arancibia
NO, Greenberg JD, Wood RJ. 2012 A hovering
flapping-wing microrobot with altitude control and
passive upright stability. In Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems 2012, Vilamoura-
Algarve, Portugal, 7 – 12 October 2012, pp. 3209 –
3216. New York, NY: IEEE.

47. Quinn DB, Watts A, Nagle T, Lentink D. 2017 A new
low-turbulence wind tunnel for animal and small
vehicle flight experiments. R. Soc. open sci. 4,
160960. (doi:10.1098/rsos.160960)

48. Cekli HE, van de Water W. 2010 Tailoring turbulence
with an active grid. Exp. Fluids 49, 409 – 416.
(doi:10.1007/s00348-009-0812-5)

49. Cekli HE, Tipton C, van de Water W. 2010 Resonant
enhancement of turbulent energy dissipation. Phys.
Rev. Lett. 105, 044503. (doi:10.1103/PhysRevLett.
105.044503)

50. Press WH. 2007 Numerical recipes: the art of
scientific computing, 3rd edn. Cambridge, UK:
Cambridge University Press.

51. Bienkiewicz B, Cermak JE, Peterka JA, Scanlan RH.
1983 Active modeling of large-scale turbulence.
J. Wind Eng. Ind. Aerodyn. 13, 465 – 475. (doi:10.
1016/0167-6105(83)90165-4)

52. Hirch C. 2007 Numerical computation of internal and
external flows: the fundamentals of computational
fluid dynamics. Oxford, UK: Butterworth-
Heinemann.

53. Hendrik T, Lumley JL. 1972 A first course in
turbulence. Cambridge, MA: MIT press.

54. Davidson PA. 2015 Turbulence: an introduction for
scientists and engineers. Oxford, UK: Oxford
University Press.

55. Prohasky D, Watkins S. 2014 Low cost hot-element
anemometry verses the TFI Cobra. In Proc. 19th
Australasian Fluid Mechanics Conf., Melbourne,
Australia, 8 – 11 December 2014. Victoria, Australia:
Australasian Fluid Mechanics Society.

http://dx.doi.org/10.1073/pnas.0902186106
http://dx.doi.org/10.1073/pnas.0902186106
http://dx.doi.org/10.1242/jeb.090845
http://dx.doi.org/10.1242/jeb.090845
http://dx.doi.org/10.1242/jeb.089672
http://dx.doi.org/10.1007/s10525-005-0125-z
http://dx.doi.org/10.1242/jeb.041806
http://dx.doi.org/10.1093/icb/icn054
http://dx.doi.org/10.1093/icb/icn054
http://dx.doi.org/10.1139/f03-101
http://dx.doi.org/10.2307/3677165
http://dx.doi.org/10.1016/j.paerosci.2013.12.003
http://dx.doi.org/10.1016/0167-6105(95)00032-1
http://dx.doi.org/10.1109/60.921463
http://dx.doi.org/10.1109/60.921463
http://dx.doi.org/10.1016/j.jweia.2008.02.019
http://dx.doi.org/10.1016/0167-6105(92)90557-Q
http://dx.doi.org/10.1109/TIE.2012.2187413
http://dx.doi.org/10.1177/1045389X10366317
http://dx.doi.org/10.1177/1045389X10366317
http://dx.doi.org/10.1088/0964-1726/21/10/105024
http://dx.doi.org/10.1088/0964-1726/21/10/105024
http://dx.doi.org/10.1115/1.4031175
http://dx.doi.org/10.2514/1.24057
http://dx.doi.org/10.2514/1.24057
http://dx.doi.org/10.2514/1.24941
http://dx.doi.org/10.1007/s00348-015-2107-3
http://dx.doi.org/10.1007/s00348-015-2107-3
http://dx.doi.org/10.2514/2.5024
http://dx.doi.org/10.1260/147547207780440776
http://dx.doi.org/10.1260/147547207780440776
http://dx.doi.org/10.1109/87.772158
http://dx.doi.org/10.1260/1475-472X.11.3-4.459
http://dx.doi.org/10.1260/1475-472X.11.3-4.459
http://dx.doi.org/10.1063/1.2236305
http://dx.doi.org/10.1063/1.2236305
http://dx.doi.org/10.2514/1.816
http://dx.doi.org/10.1017/S0022112005004842
http://dx.doi.org/10.1017/S0022112005004842
http://dx.doi.org/10.1017/jfm.2014.7
http://dx.doi.org/10.1109/MCS.2006.1580155
http://dx.doi.org/10.1126/science.1107799
http://dx.doi.org/10.1126/science.1107799
http://dx.doi.org/10.2514/8.2634
http://dx.doi.org/10.2514/8.2634
http://dx.doi.org/10.2514/3.50026
http://dx.doi.org/10.1017/S0022112062000518
http://www.af.mil/information/factsheets/factsheet.asp?id=10469
http://www.af.mil/information/factsheets/factsheet.asp?id=10469
http://www.af.mil/information/factsheets/factsheet.asp?id=10469
http://dx.doi.org/10.1242/jeb.00523
http://dx.doi.org/10.1242/jeb.00523
http://dx.doi.org/10.1098/rsos.160960
http://dx.doi.org/10.1007/s00348-009-0812-5
http://dx.doi.org/10.1103/PhysRevLett.105.044503
http://dx.doi.org/10.1103/PhysRevLett.105.044503
http://dx.doi.org/10.1016/0167-6105(83)90165-4
http://dx.doi.org/10.1016/0167-6105(83)90165-4
http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170621

10

 on November 9, 2017http://rsif.royalsocietypublishing.org/Downloaded from 
56. Berinde V. 1995 Conditions for the convergence of
the Newton method. An. Stiint. Univ. Ovidius
Constanta Ser. Mat. 3, 22 – 28.
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