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Abstract
Nonintrusive 3D fluid force measurements are still challenging to conduct accurately for freely moving animals, vehicles, 
and deforming objects. Two techniques, 3D particle image velocimetry (PIV) and a new technique, the aerodynamic force 
platform (AFP), address this. Both rely on the control volume integral for momentum; whereas PIV requires numerical 
integration of flow fields, the AFP performs the integration mechanically based on rigid walls that form the control surface. 
The accuracy of both PIV and AFP measurements based on the control surface integration is thought to hinge on determin-
ing the unsteady body force associated with the acceleration of the volume of displaced fluid. Here, I introduce a set of 
non-dimensional error ratios to show which fluid and body parameters make the error negligible. The unsteady body force 
is insignificant in all conditions where the average density of the body is much greater than the density of the fluid, e.g., 
in gas. Whenever a strongly deforming body experiences significant buoyancy and acceleration, the error is significant. 
Remarkably, this error can be entirely corrected for with an exact factor provided that the body has a sufficiently homog-
enous density or acceleration distribution, which is common in liquids. The correction factor for omitting the unsteady body 
force, �f

/(

�b + �f

)

, depends only on the fluid, �f , and body, �b , density. Whereas these straightforward solutions work even 
at the liquid–gas interface in a significant number of cases, they do not work for generalized bodies undergoing buoyancy 
in combination with appreciable body density inhomogeneity, volume change (PIV), or volume rate-of-change (PIV and 
AFP). In these less common cases, the 3D body shape needs to be measured and resolved in time and space to estimate the 
unsteady body force. The analysis shows that accounting for the unsteady body force is straightforward to non-intrusively 
and accurately determine fluid force in most applications.

1  Introduction

To date, the most reliable technique for measuring the fluid 
mechanic force generated by vehicles and objects operating 
in fluids is based on mounting models to a load-cell to record 
the 3D force vector (Rae and Pope 1984). This technique 
works well for bodies that can be fixed to a sensor and where 
the inertia forces of the body can be subtracted or ignored 
such that they do not confound the force measurement 
(Lentink et al. 2015). Force has also been approximated 
using pressure measurements over the body and in the wake. 
Pressure taps can sample the pressure distribution over the 
surface of a wing or body to integrate the net pressure force 
time-resolved (Rae and Pope 1984). Similarly, wake rakes 
can be used to determine pressure loss in the wake of airfoils 

to estimate drag, provided the flow is attached and quasi-
steady (Rae and Pope 1984).

For more complex force estimation in incompressible 
flow, including deformable bodies and freely flying animals 
(Spedding and Hedenstrom 2009; Tronchin et al. 2015; Gut-
ierrez et al. 2016), the current state-of-the-art is based on 
measuring the unsteady flow field and integrating it using 
either a control volume (Noca et al. 1999; Unal et al. 1997; 
Poelma et al. 2006; Gemmell et al. 2015) or control sur-
face (Mohebbian and Rival 2012; Rival and Van Oudheus-
den 2017) formulation of the Navier–Stokes equations––in 
combination with numerical pressure integration. Because 
pressure is calculated based on velocity, buoyancy contribu-
tions to fluid force are excluded. For accuracy, this approach 
relies on seeding the flow with tracers and using volumetric 
high-speed particle image velocimetry (PIV) to measure the 
3D flow field in the control volume or over the control sur-
face (Rival and Van Oudheusden 2017). Further, the veloc-
ity gradients have to be fully resolved in space and time 
so they can be integrated reliably. Although certain terms 
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may be ignored for special cases, the exceptional resolu-
tion required for resolving turbulent flow in the imaging 
planes will remain a technological challenge for intermedi-
ate and high Reynolds number applications (Lentink et al. 
2015). Another challenge is that the required data storage 
and post-processing of high-resolution flow fields is par-
ticularly computationally expensive for computing a simple 
three-component force time-series. An advantage of using 
the control surface formulation instead of the control volume 
approach is that data storage is less expensive; only meas-
urements over the surface of the control volume need to be 
stored, rather than throughout the entire volume.

Recently, a new fluid mechanic force measurement tech-
nique was developed specifically for directly measuring the 
forces generated by freely moving animals in vivo, the aero-
dynamic force platform (AFP) (Lentink et al. 2015). This 
new technique mechanically integrates the control surface 
formulation of the Navier–Stokes equation time-resolved, 
regardless of the flow being turbulent. This has been veri-
fied and validated for quadcopters and birds in air (Lentink 
et al. 2015; Chin and Lentink 2017; Hightower et al. 2017). 
The experimental validations demonstrate the AFP’s abil-
ity to directly measure the fluid force generated by freely 
moving animals, vehicles, and objects non-intrusively and 
accurately. A key benefit of the AFP is that the system 
integrates the control surface formulation time and space 
resolved regardless of the flow being turbulent (Lentink et al. 
2015). The data storage requirements are minimal, because 
only the time-resolved six DOF ground reaction forces and 
moments of the platform’s mechanical control surfaces need 
to be stored. Further, the computational requirements are 
straightforward; the ground reaction forces and moments 
that act on the mechanical control surfaces only need to be 
added vectorially. The walls can have windows for concur-
rent imaging, and the real-time force measurements can be 
used for closed-loop control manipulations. The method is 
non-intrusive, because animals, vehicles, and objects can 
freely move around in the control volume during recordings. 
This is also beneficial for fluid–structure interaction studies, 
because the force recordings are not confounded by inertial 
forces (which is a challenge when invertebrates, vehicles, 
and objects are mounted to a load-cell). The method is also 
non-invasive for animals, because animals are not exposed to 
laser light and all measurements take place behind the walls 
of the enclosure, so they do not interfere with the animal’s 
behavior. Another benefit is that the AFP can be deployed 
both in the lab and in field settings, and can thus be applied 
very broadly (Hightower et al. 2017). Limitations such as 
wall interference effects are similar to wind tunnel test sec-
tions, resulting in a slight underestimation of flight power 
due to beneficial wall effects (reduced induced drag). How-
ever, the measured force is precise regardless, as the animal, 

vehicle or object would experience these beneficial effects 
due to the walls of any enclosure (Hightower et al. 2017). 
The mechanical design considerations of the AFP, in par-
ticular the aeroacoustic requirement of high frequency room 
modes in the control volume, and the structural requirement 
of high natural frequencies of the instrumented walls, have 
been described by Hightower et al. (Hightower et al. 2017). 
The high natural frequencies of the AFP should exceed the 
frequencies of interest to minimize amplitude and phase 
errors in unsteady force measurements.

The theoretical foundation of the AFP relies on the same 
control-surface integral derived and verified for calculat-
ing fluid force based on flow field measurements (Moheb-
bian and Rival 2012), in combination with the zero flow 
boundary condition on the (instrumented) walls of the AFP. 
Whereas these equations have been presented originally for 
deforming bodies (Wu et al. 2005), and have been imple-
mented for rigid bodies in simulated flow fields (Moheb-
bian and Rival 2012), the evaluation of the unsteady body 
force term is still incomplete. A recent review noted that 
this term, introduced by the derivative-moment transforma-
tion to rewrite the volume integral for momentum flux into 
a surface integral, may be ignored when the volume of the 
body is thin (Rival and Van Oudheusden 2017). However, 
an error order-of-magnitude analysis to determine for which 
kinematics and body parameters the unsteady body force 
can be safely neglected in PIV and AFP measurements is 
missing. Further, a solution for experiments in which the 
unsteady body surface term cannot be neglected has yet to 
be proposed in the literature. Here, I will present a detailed 
error analysis to determine when the unsteady body force 
can be ignored without compromising accuracy, as well as 
a solution for determining the control surface integral when 
it cannot be ignored. Straightforward derivations result in a 
simple correction factor for determining the fluid force gen-
erated by bodies with homogenous density or acceleration 
distributions. Analogous derivations show the fluid force can 
also be measured at the liquid–gas interface in many cases. 
In other less common cases, the unsteady body force needs 
to be either estimated or measured, for which I propose 
experimental techniques. Direct applications of this analy-
sis include measurement of the forces generated by freely 
moving vehicles, animals, and generalized 3D deforming 
bodies in fluids.

2 � Control surface formulation

For an inertial frame of reference, the Reynolds transport 
theorem for conservation of momentum of an incompress-
ible fluid in a deformable control volume is 
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in which V is the control volume, ∂V the deformable 
surface of the volume, dV an infinitesimal control volume 
element, and dS an infinitesimal control surface element. 
Further, ρ is the density, t is time, u is the fluid velocity 
vector, v is the velocity vector of the control surface, n is 
the normal vector of the control surface, p is the fluid pres-
sure, and �  is the shear stress tensor (Wu et al. 2005). In this 
equation, we redefined the fluid pressure such that it includes 
the static pressure due to gravity, to account for buoyancy 
(further discussed in Sect. 3.5). The unsteady control volume 
integral can be recast into a control surface integral using 
the derivative-moment transformation (Wu et al. 2005) and 
Einstein notation (Mohebbian and Rival 2012) for brevity (in 
which xi refers to the three Cartesian coordinate directions 
x, y, z for i = 1, 2, 3), 

Using the fact that ∂xi/∂xj corresponds to the identity ten-
sor for i = j, that the divergence is zero for an incompressible 
fluid, ∂uj/∂xj = 0, and applying Gauss’ theorem, the control 
volume integral is transformed into a control surface formu-
lation for the conservation of momentum, 

Whereas this equation has been presented in different 
forms before (Wu et al. 2005; Mohebbian and Rival 2012; 
Rival and Van Oudheusden 2017), the difference here is that 
we will more carefully derive (1) how each surface integral 
term contributes to the net fluid force, and (2) when contri-
butions may be neglected without sacrificing accuracy.

Using the control surface formulation, the calculation of 
the fluid force generated by an animal, vehicle, or general-
ized object immersed in the control volume requires integra-
tion of Eq. 3 over the entire control surface. To ensure the 
control surface, ∂V, is continuous (Fig. 1a), it has to combine 
the enclosing surface of the deforming body, ∂B(t), the outer 

(1)

�
d

dt ∭
V

� dV + �∬
�V

�[(� − �) ⋅ �]dS

= −∬
�V

p�dS + ∬
�V

� ⋅ �dS,

(2)

∭
V

uidV = ∭
V

�xi

�xj
ujdV = ∭

V

�

�xj
(xiuj)dV

−∭
V

xi

�uj

�xj
dV = ∬

�V

xiujnjdS.

(3)

�
d

dt ∬
�V

�(� ⋅ �)dS + �∬
�V

�[(� − �) ⋅ �]dS

= −∬
�V

p�dS +∬
�V

� ⋅ �dS.

control surface, CS, and an infinitesimally thin tubular sur-
face, ∂b(t), that connects the body with the outer surface:

Because the connecting surface, �b(t), is infinitesimally 
thin, the unsteady, convective, pressure, and shear compo-
nents are equal and opposite on opposing sides of the tubular 
surface, ∂b(t), which effectively forms a line cutting through 
the flow field. Therefore, the net integral contribution over 
∂b(t) is zero, and the control surface integral (Eq. 3) for net 
fluid force F(t) on the body (Wu et al. 2005) simplifies to 

for particle image velocimetry (PIV; Fig. 1b) applica-
tions. The convective term in Eq. 5 vanished on the body 
surface because the difference between the velocity of the 
fluid touching the body and the velocity of the body sur-
face must be zero due to the no-flow and no-slip boundary 
condition on walls, � − � = � for � ∈ �B(t) . The control 
surface integral can be further simplified for the aerody-
namic force platform (AFP; Fig. 1c) because the velocity 
boundary conditions on the outer surfaces are set to zero by 
the instrumented force plates. These plates form the outer 
control surface and mechanically integrate the pressure and 
shear stress distributions time and space resolved 

Whereas the net fluid force depends predominantly on the 
integrals over the outer control surface, both the PIV (Eq. 5) 
and AFP (Eq. 6) formulations share one additional term due 
to the unsteady motion of the control surface that encloses 
the body, ∂B(t) 

This integral captures the force required to accelerate the 
fluid volume that was displaced by the body volume, B. The 

(4)�V = CS ∪ �B(t) ∪ �b(t).

(5)

�(t)= −

⎛

⎜

⎜

⎝

∬
�B

−p�dS +∬
�B

� ⋅ �dS

⎞

⎟

⎟

⎠

= −∬
CS

p�dS +∬
CS

� ⋅ �dS − �
d

dt ∬
CS

�(� ⋅ �)dS

−�∬
CS

�[(� − �) ⋅ �] dS − �
d

dt ∬
�B

�(� ⋅ �)dS,

(6)

�(t)= −

⎛

⎜

⎜

⎝

∬
�B

−p�dS + ∬
�B

� ⋅ �dS

⎞

⎟

⎟

⎠

= −∬
CS

p�dS + ∬
CS

� ⋅ �dS − �
d

dt ∬
CS

�(� ⋅ �)dS.

(7)UBF = �
d

dt ∬
�B

�(� ⋅ �)dS.
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calculation of this unsteady body force (UBF) is analogous 
to applying Archimedes principle for calculating buoy-
ancy of a body in a static fluid undergoing gravity. Finally, 
the surface formulation can be rewritten into volumetric 
form using Gauss theorem (Saffman 1992; Rival and Van 
Oudheusden 2017; DeVoria et al. 2014) 

Rival and Van Oudheusden (2017) used this formulation 
to conclude that the unsteady body force vanishes when the 
body is sufficiently thin. However, it is unclear in which 
applications the unsteady body force can be neglected more 
generally, and how it can be measured when it is significant.

3 � Results and discussion

To evaluate the unsteady body force in fluid force measure-
ments, we follow a six-tiered approach. First, we perform an 
order-of-magnitude analysis to determine for which fluid and 
body density combinations the unsteady body force can be 
neglected and find it is negligible for all non-buoyant bodies. 
Second, we analyze the error for buoyant bodies with con-
stant volume to determine for which combinations of body 
motions, shapes and densities the unsteady body force can 

(8)UBF = �
d

dt ∭
B

�dV .

be neglected. Third, we derive a correction factor to accu-
rately determine the fluid force for constant-volume bodies 
experiencing buoyancy. Fourth, we approximate the fluid 
force for constant-volume bodies that dynamically deform 
at the liquid–gas interface. Fifth, we determine under which 
conditions the unsteady body force cannot be ignored for 
buoyant bodies due to variation in body density and vol-
ume over time. Finally, we discuss techniques to measure 
the unsteady body force for a subclass of buoyant bodies for 
which it cannot be neglected in PIV- and AFP-based force 
measurements.

(a)

(b)

(c)

Fig. 1   Control surface formulation for an arbitrary deforming body 
moving through a fluid. a Definitions of the variables used in the for-
mulation for control volume V, with the corresponding continuous 
control surface �V = CS ∪ �B(t) ∪ �b(t), where CS is the outer con-
trol surface of the control volume, �B(t) is the deforming body sur-
face, �b(t) is the infinitely thin tubular surface that connects CS with 
�B(t), and n is the normal vector of the surface. The fluid force acting 
on the body at the center of gravity is F(t), W is the weight of the 
body, and Ub(t) is the velocity of the center of gravity of the body. 
The bird cartoon is enlarged for clarity and can be replaced with any 
deformable body of interest. b A sketch of the cross-section of the 
control surface typical for calculating force based on particle image 
velocimetry (PIV), corresponding to Eq.  5. To simplify the sketch, 
the velocity vectors on the outer control surface, CS, have been drawn 
along the direction of the surface normal, n, whereas their directions 
are arbitrary in general. Further, to avoid clutter, the pressure, p(t), 
shear tensor, �  , and velocity distribution, u(t), are only shown on 
CS and not on ∂B(t) and ∂b(t). The subscript “B” refers to body. c A 
sketch of the cross-section of the control surface typical for measur-
ing the force with an aerodynamic force platform (AFP), correspond-
ing to Eq.  6. The control surface CS is physically represented by 
walls that have a no-flow boundary condition �(� ∈ CS, t) = � . The 
walls are made out of instrumented force plates that mechanically 
integrate the time-dependent fluid pressure and shear stress distribu-
tions over their surface, which is transferred to load cells that record 
components of the integral as FAFP(t). For details see (Lentink et al. 
2015; Hightower et al. 2017; Chin and Lentink 2017). Both the PIV 
and AFP control surfaces are submerged in a larger volume of fluid 
(light blue), which is static around the AFP

▸
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To objectively define when the error in the fluid force 
measurement, Ferror , can be neglected, we compare the 
error to the weight of the vehicle, animal, or object, W  . 
The fluid force error fraction, �F = Ferror∕W  , is the desired 
experimental error level, in which �F compares the error in 
the fluid force measurement to body weight. Based on the 
current state-of-the-art in non-intrusive fluid force meas-
urement systems in engineering (Lentink et al. 2015), we 
set (�F) ⩽ � with (�) ⩽ 0.01 , in which ϵ represents the 
non-dimensional error fraction required for the experiment 
to be accurate. However, we also note that based on the 
current animal biomechanics literature (�) ⩽ 0.1 may still 
be acceptable (Dickinson et al. 1999; Gutierrez et al. 2016; 
Poelma et al. 2006) whenever answering a biological ques-
tion does not require higher accuracy.

3.1 � Small fluid‑body density ratios diminish force 
error

First, we consider animals (e.g., insects, bats and birds), 
vehicles (e.g., airplanes) and objects (e.g., fans and wind 
turbines) operating in fluids that have a much lower den-
sity than their average (body) density. The magnitude of the 
unsteady body force is proportional to the density of the 
fluid. To determine how it compares to the net force that acts 
on the vehicle, animal, or object, we apply Newton’s second 
law of motion to relate it to the net body acceleration, �b . 
Integrating the generalized form of Newton’s second law 
for the deforming body (Meriam and Kraige 1993), which 
we consider as a system of infinitesimal connected particles 
with an associated acceleration and mass field, we find 

in which the net fluid force on the body, �(t) , minus 
the weight of the body, W, is equal to the product of body 
density, ρb, volume, Vb, and the body mass-averaged body 
acceleration, 𝐚̄b , which acts at the center of mass of the body. 
If the body experiences significant buoyancy, this will con-
tribute to balancing body weight via the static pressure con-
tribution over the body surface. Whereas this static pressure 
contribution cannot be determined with PIV, the AFP can 
measure it if it is tared before the body enters the control 
volume and changes the static pressure distribution over the 
control surface. Next, we perform an analysis to estimate the 
order of magnitude of the unsteady body force term (Eq. 8) 

(9)

𝐅(t) −𝐖 = −

⎛

⎜

⎜

⎝

∬
�B

−p𝐧dS +∬
�B

� ⋅ 𝐧dS

⎞

⎟

⎟

⎠

−𝐖 = �bVb𝐚̄b,

(10)
⎛

⎜

⎜

⎝

𝜌f

d

dt �
B

�dV

⎞

⎟

⎟

⎠

= 𝜌fVbab
�

or 𝜌fV̇bUb

�

,

which is proportional to fluid density, �f , the volume of 
the body, Vb , and the magnitude of the body acceleration, 
ab . Between parentheses we also present the magnitude for 
the case when body deformation dominates average body 
acceleration, in which V̇b is the average rate of body volume 
change and Ub is the average body velocity. Here, we focus 
on cases in which (Vbab∕V̇bUb

)

> 1 , because those are 
representative for most animals, vehicles and a large number 
of deforming objects, which all approximately have a body 
with constant volume, V̇b = 0 . We quantify the integration 
error due to omitting the unsteady body force for arbitrary 
bodies that have a relatively constant volume by taking the 
outcome of Eq. 10 and comparing it to the order of magni-
tude of Eq. 9, 

This ratio shows that it is safe to neglect the unsteady 
body force integral (Eq. 7, 8) in any case in which the aver-
age body density is much larger than the fluid density. Most 
animals, vehicles, and objects in air have a density similar to 
or greater than water, which is about 800 times denser than 
air at sea level, corresponding to �

�
≈ 0.001 , which reduces 

with altitude. More careful evaluation of the unsteady body 
force integral is required, however, for vehicles and objects 
submerged in gas that are near neutrally buoyant 

(

�
�
≈ 1

)

 or 
buoyant 

(

𝜀
𝜌
> 1

)

 . Furthermore, for animals, vehicles, and 
objects submerged in liquids, the average body density will 
likely be on par with the fluid 

(

�
�
≈ 1

)

 . In general, buoyancy 
can result in a significant error whenever (𝜀

𝜌

)

> (𝜀) , 
which requires a more careful analysis to determine when it 
can be neglected or should be corrected for.

3.2 � Error analysis for buoyant bodies with constant 
volume

Now we focus on buoyant bodies with approximately con-
stant volume such as animals (e.g., plankton, fish, swim-
ming mammals), vehicles (e.g., submarines, zeppelins) and 
objects (e.g., balloons). Considering that the unsteady body 
force integral is expected to be of importance for animals, 
vehicles, and deforming objects that experience buoyancy, 
(𝜀

𝜌

)

> (𝜀) , we will evaluate kinematics and shape 
parameters to determine when it can still be neglected safely.

First, we consider arbitrary buoyant bodies that do not 
accelerate. For this case, we find that any constant velocity 
distribution over the body surface will result in a net-zero 
unsteady body force integral (Eq. 8), 

(11)�
�
≡ �fVbab

�bVbab
= �f∕�b.

(12)�f

�

�t ∭
B

�dV = �.
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This shows that the unsteady body force term acting on 
the body (Eqs. 5, 6) will be zero for arbitrarily shaped bod-
ies with a constant velocity distribution regardless of �

�
 , 

shape, volume, and density distribution—because the rate of 
change of the integrated velocity over the body is zero. This 
applies to measurements in wind tunnels, water tunnels, and 
other flow channels where the flow velocity is held constant.

For buoyant bodies with a constant volume, V̇b = 0 , 
homogenous density, ∇�b = 0 , and a dynamically deform-
ing shape, we will first consider simple examples before 

generalizing to show that the instantaneous fluid-force error 
is zero if the net instantaneous body acceleration is zero. 
To make the analysis more intuitive, we consider the body 
volume divided into strips, analogous to the blade element 
method for animals and vehicles moving in fluids (Dickson 
et al. 2008; Leishman 2006). We first analyze the unsteady 
body acceleration integral (Eqs. 7, 8) over the cross-section 
of these slices, Fig. 2. In this analysis, we assume that each 
slice is sufficiently thin, and that the surface normal of the 
cross-sections are sufficiently aligned with the local direc-
tion of the angular acceleration vector, and sufficiently per-
pendicular to the local linear acceleration vector (so that 
cosine and sine errors can be ignored). For accelerating bod-
ies, there exist specific combinations of linear and rotational 
acceleration distributions over specific body shapes that can 
still result in a net-zero unsteady body force. The simplest 
explanation is that as long as the net acceleration of the body 
is zero, the error in the net force measured due to ignoring 
the unsteady body force will be zero. Take, for example, a 
thin arbitrary elliptic disk (Fig. 2b, c) undergoing solid-body 
angular acceleration with the center of angular acceleration 
located at the center of area––this combined acceleration 
and area distribution will nullify the integral (Eqs. 12, 13) 
for arbitrary angular acceleration profiles in time, independ-
ent of area and volume. This is illustrated for a cylinder in 
Fig. 2c, and holds in general as long as the net integrated 
acceleration vector over the body is zero.

For a combination of linear, a, and angular, 𝛀̇ , solid-body 
acceleration, the unsteady body force integral (Eq. 8) is zero 
when the volume-averaged linear acceleration, �1 , is equal 
and opposite to the volume-averaged rotation based accel-
eration, �r

This is illustrated by combining the ellipses of Fig. 2b, 
c and replacing the velocity vectors with similar accelera-
tion vector distributions that are appropriately scaled and 
oriented to balance out over the elliptical cross-section. 
Equation 13 holds more generally, independent of the fluid 
density ρf and body volume Vb, for arbitrary body volumes 
in which �̄1 = −�̄r , which is primarily a theoretical scenario.

To evaluate the experimental error more generally when 
the net body acceleration is non-zero, �̄b ≠ � , it is more 
objective to compare the unsteady body force to the weight 
(

�bVbg
)

 of the vehicle, animal, or object, 

(13)

𝜌f

d

dt ∭
B

�dV = 𝜌f ∭
B

(

�̇ × � + �

)

dV

= 𝜌fVb

(

�̄r + �̄1

)

= � for �̄1 = − �̄r.

(14)�a ≡ �fVbab

�bVbg
= �

�
⋅ ab∕g,

(a)

(b)

(c)

Fig. 2   A strip-theory based evaluation to determine the effect of body 
kinematics and shape on the unsteady body force experienced by a 
deforming body moving through a fluid. a Analogous to the blade 
element method, we divide the main body and lifting surfaces into 
thin strips, ∆Bb and ∆Bw, respectively, in which we can more easily 
evaluate the effect of body kinematics on the unsteady body force 
integral. For small body deformations, the velocity and acceleration 
distribution on the boundary depends on the average solid-body trans-
lational motion (b), and rotational motion (c), at the center of grav-
ity (cg) of each element. The velocity vectors can be replaced with 
acceleration vectors to conduct the analysis for solid-body accelera-
tions. Here subscripts b, w, cg, refer to the body, wing, and center of 
gravity, respectively, ∂B is the outer surface of the body element, u is 
the velocity, Ω is the angular velocity, and r the radial distance from 
the cg
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in which ab is the magnitude of the net body accelera-
tion. This straightforward analysis demonstrates that the 
unsteady body force may not be ignored when the average 
body accelerations are significant (𝜀a) > (𝜀) . Because 
we compare the error to body weight, it does not diminish 
for thinner bodies.

3.3 � Accurate force calculation for buoyant bodies 
with constant volume

The net fluid force can be calculated for deforming bod-
ies with a sufficiently constant volume without measuring 
the unsteady body force term using a simple correction 
factor—regardless of the fluid-body density ratio �

�
 . For a 

constant correction factor, either the density distribution or 
the acceleration field of the body needs to be approximately 
homogenous, meaning ∇�b = 0 or ∇ẍb = ∇ÿb = ∇z̈b = � , 
and V̇b = 0 . Finally, the unsteady body force can also be 
calculated if the acceleration field can be determined in a 
simple fashion, which is typical for solid body dynamics.

To calculate the correct fluid force based on the con-
trol surface integral without the unsteady body force term, 
we generalize Eq. 13 for a deforming body with constant 
volume, 

in which 𝐚̄b is the volume-averaged body acceleration, 
𝐚̄b,V = ∭

B
𝐚bdV∕Vb, which acts at the center of volume of 

the body. If the density of the body is constant throughout 
the body volume, 𝐚̄b,V is equal to the mass-averaged accel-
eration 𝐚̄b,m = ∭

B
�b𝐚bdV

/∭
B
�bdV  . Further, the center 

of volume and mass in which the respective accelerations 
act will overlap, forming the foundation for deriving the 
exact unsteady body force correction factor below. Consid-
ering it is convenient in experiments to only evaluate the 
control surface integral for the conservation of momentum 
(Eq. 5) over the outer control surface CS, we define the net 
associated force �CS(t) , as follows: 

which also gives us the equation to calculate the fluid 
force �(t) based off measuring �CS(t) and an exact correc-
tion factor.

First, we derive the fluid-force correction factor for con-
stant-volume bodies, V̇b = 0 , with a constant density distri-
bution, ∇�b = 0 , and an arbitrary acceleration distribution. 
The homogenous body density is a good approximation 

(15)𝜌f

d

dt ∭
B

�dV = 𝜌fVb�̄b,

(16)�CS(t) ≡ �(t) + �
d

dt �
�B

�(� ⋅ �)dS,

for swimming animals, although the density would be 
approximated as an average, 𝜌̄b = mb∕Vb , in which mb is 
the mass of the body and Vb the volume. To derive an 
exact correction factor that accounts for the unsteady body 
force in Eq. 16 without having to evaluate the integral, 
we rewrite Eq. 16 for �(t) . The unsteady body force term 
is replaced with Eq. 15, and the resulting expression is 
substituted in Eq. 9, which equates it to the inertia of the 
body as follows: 

Based on the resulting expression for the average body 
acceleration, we now derive the constant correction factor 
for calculating �(t) based on the experimentally measured 
fluid force �CS(t) as 

in which �a = �f∕
(

�b + �f

)

 is the correction factor for 
the fluid force measured via the outer control surface, 
�CS(t) . For animals 

(

𝜌̄b ≈ 1000 kg m−3
)

 swimming in water 
(

�f = 1000 kg m−3
)

 , the correction factor is significant, 
�a ≈ 0.5 , and needs to be accounted for. In contrast, for ani-
mals flying in air 

(

�f = 1.2 kg m−3
)

 , the correction factor 
is insignificant, �a ≈ 0.0012 , and can safely be neglected. 
We thus find that omitting the unsteady body force integral 
in experiments is safe for bodies that do not experience 
significant buoyancy; (�

�

)

⩽ (�) . When buoyancy is 
significant, omitting the unsteady body force can be easily 
corrected for with a constant correction factor, �a.

Second, we derive the fluid-force correction factor 
for constant-volume bodies, V̇b = 0 , with a homogenous 
acceleration ∇ẍb = ∇ÿb = ∇z̈b = � and an arbitrary density 
distribution, typical for water vehicles. If the body density 
is highly variable, the volume-averaged, �̄b,V , and mass-
averaged, �̄b,m , body accelerations will differ in general. 
For a homogenous acceleration, however, these average 
accelerations will still be identical. Therefore, we find a 
similar correction factor for a body with constant density 
as above; 𝜁

𝜌
= 𝜌f∕

(

𝜌̄b + 𝜌f

)

 , where 𝜌̄b = ∭
B
𝜌bdV∕Vb . This 

requires a more careful body density distribution meas-
urement before or after the fluid force measurements (for 
example, based on a CT scan of an animal or the CAD 
model of a vehicle).

Further, for deforming bodies with a known acceleration 
field in the body and an arbitrary density distribution, there 
still exists a straightforward calculation for the correct fluid 
force. For example, if the body undergoes simple combina-
tions of linear and angular accelerations (e.g., Fig. 2b, c), 

(17)

�(t) −� = �CS(t) − 𝜌fVb�̄b(t) −� = 𝜌bVb�̄b(t) → �̄b(t)

=
�CS(t) −�

(

𝜌b + 𝜌f

)

Vb

.

(18)

�(t) = �CS(t) −
�fVb

(

�b + �f

)

Vb

(

�CS(t) −�

)

=
(

1 − ζa
)

�CS(t) + ζa�,
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the acceleration field may be straightforward to determine 
experimentally. To calculate the fluid force, the volume-
averaged body acceleration, āb,V , needs to be determined and 
multiplied with the body mass to correct the force measured 
with the outer control surface, 

However, the additional measurement of volume-aver-
aged body acceleration to calculate fluid force using Eq. 19 
is generally not needed if a small error is permitted.

Finally, for most bodies experiencing buoyancy in 
biology and engineering, the error made by approximat-
ing the volume-averaged body acceleration, āb,V , with the 
mass-averaged body acceleration, āb,m , will be accept-
able. The resulting error in calculating the fluid force as 
�(t) =

(

1 − �ρ

)

�CS(t) + �ρ� based on measuring �CS(t) and 
the weight, W, as well as using 𝜁

𝜌
= 𝜌f∕

(

𝜌̄b + 𝜌f

)

 as a first 

(19)�(t) = �CS(t) − 𝜌fVb�̄b,V.

approximation will generally be good enough. Especially, 
because the effect of density inhomogeneity will generally 
average out and the error is thus likely to reduce towards 
(�) . If it is essential to meet strict accuracy requirements, 
e.g., in physics, the unsteady body force (Eqs. 7, 8) needs 
to be measured and included in the control surface integral 
whenever the density is inhomogeneous and the acceleration 
is complex with (𝜀a) > (𝜀).
3.4 � Approximation for constant‑volume bodies 

at the liquid–gas interface

Many water vehicles and several aquatic animals generate 
fluid force at the water–air interface, such as boats and the 
enigmatic basilisk lizard that can run over water (Hsieh 
and Lauder 2004), Fig. 3. For animals, vehicles and objects 
moving at constant velocity, the unsteady body force and 
the associated error will be zero as shown before (Eq. 12). 
Therefore, we focus here on bodies that experience signifi-
cant body acceleration, as is the case for the basilisk running 
over water (Hsieh and Lauder 2004). The key assumption 
that we have to make is that most of the body area is sur-
rounded by gas and only a small segment by liquid, as is 
the case for the basilisk lizard (Hsieh and Lauder 2004). 
The visually most apparent challenge is to evaluate the con-
tribution of the dynamically deforming free surface at the 
interface, Fig. 3.

At the liquid–gas interface, the control surface integral 
can be simplified because of the specific boundary condi-
tions that apply (Batchelor 2000). Due to the large density 
discontinuity over the interface, the stress in the gas may be 
considered constant and equal to −p0� everywhere in the gas, 
including at the gas-side of the interface (in which 

�
 is the 

identity tensor). In contrast, the pressure on the liquid-side 
of the interface is a function of the radius of curvature of the 
interface via surface tension, resulting in a pressure disconti-
nuity over a deformed interface. Further, the shear stress on 
the gas-side of the interface is negligible, � ⋅ � = � . Finally, 
there is also no-flow through the interface; [(� − �) ⋅ �] = 0 . 
In concert, these boundary conditions simplify the control 
surface formulation for conservation of momentum (Eq. 5) 
as follows: 

(20)

�(t) = −

⎛

⎜

⎜

⎝

∬
�Bw

−p�dS +∬
�Bw

� ⋅ �dS

⎞

⎟

⎟

⎠

= −∬
CS

p�dS +∬
CS

� ⋅ �dS − �
d

dt ∬
CS

�(� ⋅ �)dS

−�∬
CS

�[(� − �) ⋅ �]dS.

(a)

(b)

Fig. 3   Control volume analysis for measuring the fluid force gener-
ated during locomotion at the interface of water and air. The basilisk 
lizard cartoon is enlarged for clarity and can be replaced with any 
deformable body of interest that has a small contact surface with the 
liquid. Again, the PIV, (a) and AFP control surfaces, (b) are con-
structed as in Fig. 1, however, this time with a free surface that inter-
faces the liquid (water) and gas (air) phase. Both the PIV and AFP 
control surfaces are submerged in a larger volume of liquid (light 
blue), which is static for the AFP. Submerging the AFP in the liquid 
reduces the net static load on its walls from the entire weight of the 
control volume to just the buoyancy of the AFP walls. The basilisk 
cartoon has been adapted from (Hsieh and Lauder 2004)
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This momentum balance shows how the segment of the 
body surface that is in contact with the water, �Bw , transfers 
the fluid force, �(t), to the body. The stress exerted on the 
air-side of the free surface, FS, and the surface segment of 
the body that is in contact with air, �Ba , can be neglected 
because the air pressure is constant over �Ba (Batchelor 
2000). The air pressure, p0 , at the control surface is effec-
tively constant and acts everywhere around the control 
surface (Batchelor 2000), therefore, it makes no net force 
contribution when integrated over the closed control sur-
face. Further, the shear contribution of the air touching the 
free surface is negligible for gas–water interfaces (Batchelor 
2000), 

Applying the no-flow condition on the interface, we also 
find that the momentum transfer integral over the free sur-
face is zero, 

If we focus on large animals and vehicles, the fluid iner-
tia and buoyancy forces will dominate surface tension due 
to interface curvature. Because the associated Weber and 
Bond numbers will be much larger than 1 (Bush and Hu 
2006), we can neglect the surface tension acting on the 
body at the water–air interface contact-line, Ci,b , between 
�Bw and �Ba.

Finally, the unsteady body force (Eqs.  7, 8) can be 
neglected in Eq. 20 because both the mass of the air and 
water displaced by the body are small. For the large seg-
ment of the body volume surrounded by air, Ba , the density 
ratio is very small, 𝜀

𝜌
< (𝜀) . Therefore, the unsteady body 

force associated with the mass of air displaced by the body 
volume, Ba , can be neglected, because the ratio of the dis-
placed air mass and the body mass, �m,a ≡ �aBa∕�bVb , is 
sufficiently small; (�m,a

)

⩽ (�) . Similarly, the unsteady 
body force associated with the small mass of water displaced 
by the body volume, Bw , can be neglected when the mass 
of the water displaced by the wetted body segment is small 
enough compared to the mass of the body (�m,w

)

⩽ (�) , 
with �m,w = �wBw∕�bVb and Vb = Ba + Bw . In summary, for 
a body that is only wetted over a small segment, the errors 
in the fluid force will be much smaller than the weight of 
the animal or vehicle, 

(21)∬
FS

� ⋅ �dS = �.

(22)−�∬
FS

�[(� − �) ⋅ �]dS = �.

(23)

𝜌
d

dt ∬
𝜕B

�(� ⋅ �)dS = 𝜌
d

dt ∬
𝜕Ba

�(� ⋅ �)dS + 𝜌
d

dt ∬
𝜕Bw

�(� ⋅ �)dS ≪ �.

This approximation is particularly acceptable in ani-
mal biomechanics research, because the genetic variation 
between individuals and behavioral variability will typically 
be larger than the errors in the fluid force.

Integrating all these simplifications and adding the no-
flow and no-slip boundary conditions for the mechanical 
control surface of the AFP in Eq. 20, we find that the fluid 
forces generated by animals and vehicles at liquid–gas inter-
faces can be measured using either PIV or the AFP (although 
PIV cannot establish the buoyancy contribution to fluid 
force). The AFP force measurement is based on the follow-
ing straightforward mechanical integration of pressure and 
shear stress over the control surface, 

Regardless of the applicability of PIV and the AFP for 
measuring the fluid forces, at small Weber and Bond num-
bers < (1), the curvature at the interface contact-line with 
the body needs to be measured to include surface tension 
(Bush and Hu 2006). Furthermore, for accelerating bodies 
submerged to a degree that (𝜀m,w

)

> (𝜀) , the unsteady 
body force (Eqs. 7, 8) needs to be measured and included in 
the control surface integral.

3.5 � Variable body density and volume error

For more general bodies that experience significant buoy-
ancy, (𝜀

𝜌

)

> (𝜀) , with a density distribution and vol-
ume that change over time, we need to explicitely evaluate 
the effect of gravity. For this we redefined fluid pressure 
in Eq. 1 so that it includes the static pressure due to grav-
ity as follows p(t) ≡ p(t) + p0 + ρgH  , in which g is the 
gravity constant, H the depth under the (free) surface in 
the z direction (Fig. 1a, c), and p0 the static pressure at 
zero depth, H = 0. In most of our fluid force derivations for 
gasses, the gravity term could be ignored, however, for 
liquids buoyancy is generally significant. Further, for all 
buoyant bodies of which the density and volume varies 
significantly over time, dynamic buoyancy effects need to 
be included. Pressure due to gravity is included in Eq. 3 
and can be evaluated via the redefined pressure above for 
a general deformable control volume, 

Without the body present in the control volume,  the 
first surface integral over the outer control surface repre-
sents the weight of the fluid resting on the boundaries; this 
static contribution can be biased to zero (tared) in AFP 

(24)

�(t) = −

⎛

⎜

⎜

⎝

∬
�Bw

−p�dS +∬
�Bw

� ⋅ �dS

⎞

⎟

⎟

⎠

= −∬
CS

p�dS +∬
CS

� ⋅ �dS.

(25)∬
�V

(

�fgH
)

�dS = ∬
CS

(

�fgH
)

�dS +∬
�B

(

�fgH
)

�dS.
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measurements. When the body is added to the AFP, the first 
integral sums the static pressure changes on the AFP con-
trol surface due to buoyancy of the body. The second term 
represents the buoyancy force on the body due to the vol-
ume displaced by the body, �B(t), equivalent to Archime-
des principle (Saffman 1992), showing how the buoyancy 
force can be measured with the AFP. Whereas the AFP can 
determine the buoyancy forces on the body via the pressure 
field induced by the body on the outer control surface, PIV 
cannot, with the resulting error in the fluid force being equal 
to the buoyancy force. Further, the error in the measured 
fluid force due to buoyancy changes, as compared to body 
weight, depends on how much the volume of the body var-
ies over time, 

For PIV, the body volume change, ΔVb , must be meas-
ured carefully when (𝜀ΔV) > (𝜀) , regardless of the rate at 
which the volume changes, if the change takes place within 
the measurement period and is large compared to the body 

(26)�ΔV ≡ �fΔVbg

�bVbg
= �

�
⋅ ΔVb∕Vb.

volume, Vb . This is relevant for fish with swim bladders and 
submarines, as well as balloons and zeppelins when the aver-
age volume or density of the body changes significantly.

In the case of a significant body volume rate-of-change 
(Vbab∕V̇bUb

)

⩽ 1 (see Eq. 10), we find that larger body 
volumes reduce error in both PIV and AFP based fluid 
force measurements, 

So, in general smaller and thinner volumes do not reduce 
fluid force error across the broad range of body kinemat-
ics and shapes considered here. Whenever (𝜀ΔV) > (𝜀) , 
buoyancy force changes need to be measured and included 
in PIV studies, and when (𝜀V̇) > (𝜀) , the unsteady body 
force (Eqs. 7, 8) needs to be measured and included in both 
PIV and AFP studies.

(27)𝜀V̇ ≡ 𝜌fV̇bUb

𝜌bVbab
= 𝜀

𝜌
⋅

V̇bUb

Vbab
.

Table 1   Summary of proposed solutions for attaining accurate nonintrusive fluid-force measurements based on control-surface integration for a 
wide range of applications, including vehicles (ve), animals (an) and objects (ob)

The row lists parameters that govern the various errors and the columns are associated with the order in which the solution was developed 
in the corresponding sections. The first column (3.1) covers all forms of flight in which buoyancy can be ignored, the other columns cover 
more complex conditions in liquids and gases (see the associated sections for details). The maximal measurement error allowed in the nonin-
trusive fluid force measurement, �F , depends on the research domain and is set to (�) ⩽ 0.01 for engineering and (�) ⩽ 0.1 for biology (see 
main text). The legend for the parameters is as follows: –, arbitrary; N/A, not applicable; H, homogenous; IH, inhomogeneous; ζa = �f∕

(

�b+�f

)

 
use this exact correction factor for acceleration inhomogeneity; 𝜁

𝜌
= 𝜌f∕

(

𝜌̄b + 𝜌f

)

 , use this exact correction factor for density inhomogeneity; 
𝜌̄b = ∭

B
𝜌bdV∕Vb , measure the average body density such that the error in the fluid force (�F) ⩽ (�);�B , measure the body shape time and 

space resolved such that (�F) ⩽ (�);Ci,b measure the water–air interface contact-line on the body such that (�F) ⩽ (�) . The solution cell 
color code for the unsteady body force error is as follows: green, no error correction is needed; blue, use the exact correction factor; gray, make 
body surface measurements to calculate the unsteady body force. Note that the AFP can  measure the (variable)  buoyancy  force acting on a 
body while PIV cannot
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3.6 � Unsteady body force measurement

To determine the unsteady body force for the few conditions 
in which it cannot be neglected or corrected for, the surface 
of the body needs to be measured time-resolved. However, 
for most applications, this additional body measurement is 
obsolete whenever approximating the body volume-averaged 
acceleration with the body mass-averaged acceleration is 
acceptable. When body measurements are needed, it is use-
ful to distinguish between engineered and biological bodies. 
Because most vehicles have stiff body elements undergoing 
solid-body motion, straightforward inertial measurement 
unit (IMU)-based or motion-capture-based linear and rota-
tional acceleration measurements will do––in combination 
with standard body surface scans. For locomoting animals, 
deforming vehicles, and deforming objects, the body surface 
needs to be measured time and space resolved. Recently, 
structured light techniques have been developed that can do 
this based on high-speed video. The 3D reconstruction of 
the surface can either be initiated by elaborate manual post-
processing (Wolf and Konrath 2015) or can be fully auto-
mated (Deetjen et al. 2017). Structured light 3D reconstruc-
tion works by projecting a known light pattern on the surface 
and recording it with a high-speed camera that has been cali-
brated with the projector via a direct linear transformation 
(DLT) calibration (Wolf and Konrath 2015; Deetjen et al. 
2017). Next, the surface data needs to be used to determine 
the velocity field on the body surface, which was recently 
demonstrated for the upper surface of the flapping wings of 
a bird by Deetjen et al. (Deetjen et al. 2017). To ensure the 
unsteady body force is calculated accurately after effectively 
differentiating surface position twice (Eq. 7), high-resolution 
is required in time and space, as well as smoothing tech-
niques to minimize noise amplification. A good numerical 
technique for minimizing noise in the second derivative 
already exists (Eilers 2003), based on which accurately cal-
culating the unsteady body force is feasible. Further, current 
PIV (Gemmell et al. 2015) and AFP (Hightower et al. 2017) 
setups already offer sufficient optical access to scan the 
body surface in concert. Conveniently, however, the above 
error analysis demonstrates that these additional efforts are 
unnecessary for the majority of PIV and AFP applications 
in gas and for the majority of applications in liquids. This 
can be objectively evaluated case-by-case based on the val-
ues of the non-dimensional error parameters that determine 
if density, �

�
 , average body acceleration, �a , body volume 

change, �ΔV , and body volume rate-of-change, 𝜀V̇ , errors can 
be neglected. Finally, if changes in the average density of the 
body need to be accounted for, this can be estimated using 
multi-view high-speed fluoroscopy (Brainerd et al. 2010).

4 � Conclusions

The control-surface integration methodology used to deter-
mine the 3D force generated by freely moving bodies in 
fluids is generally accurate. The estimated accuracy of this 
nonintrusive methodology is categorized and summarized 
in Table 1, and applies to particle image velocimetry and 
aerodynamic force platform measurements on vehicles, 
animals, and deforming objects. The force is determined 
using Reynolds transport theorem for conservation of 
momentum over the outer control surface around the body, 
submerged in gas, liquid or at the liquid–gas interface, 
which gives the force acting on the outer control surface 
�CS(t) . For non-accelerating bodies, either freely moving 
or mounted in a test facility, the fluid force �(t) = �CS(t) . 
The force acting on a freely moving body that accelerates is 
�(t) =

(

1 − �
�

)

�CS(t) + �ρ� , in which the correction fac-
tor �

�
= �f∕

(

�b + �f

)

 accounts for the unsteady body force 
due to body acceleration, W is the weight of the body, �f is 
the fluid density, and 𝜌̄b is the average body density. Conse-
quently, the unsteady body force and associated correction 
factor can be safely ignored for bodies that experience negli-
gible buoyancy compared to their weight, e.g., all flying bod-
ies that are heavier than air. The control-surface formulation 
without correction factor is also accurate for heavier than 
air bodies that operate at the liquid–gas interface, provided 
the body is only submerged to a small degree, such as the 
legs and feet of the basilisk lizard running over water. When 
bodies experience significant buoyancy, however, the con-
stant correction factor �

�
 is required to accurately determine 

the fluid force based on measuring �CS(t) , which applies to 
swimming animals and water vehicles in general. In contrast, 
when the volume of the body changes significantly, or the 
rate of change in body volume is significant (and in two 
other cases listed in Table 1), the unsteady buoyancy or body 
force may need to be determined by measuring the shape of 
the body time-resolved, and numerically evaluating Eq. 7. 
However, for most applications across engineering, biology, 
and physics, fluid force can be measured accurately without 
measuring the unsteady body force.
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