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How the hummingbird wingbeat is tuned for efficient hovering
Rivers Ingersoll* and David Lentink

ABSTRACT
Both hummingbirds and insects flap their wings to hover. Some
insects, like fruit flies, improve efficiency by lifting their body weight
equally over the upstroke and downstroke, while utilizing elastic recoil
during stroke reversal. It is unclear whether hummingbirds converged
on a similar elastic storage solution, because of asymmetries in their
lift generation and specialized flight muscle apparatus. The muscles
are activated a quarter of a stroke earlier than in larger birds, and
contract superfast, which cannot be explained by previous stroke-
averaged analyses. We measured the aerodynamic force
and kinematics of Anna’s hummingbirds to resolve wing torque and
power within the wingbeat. Comparing these wingbeat-resolved
aerodynamic weight support measurements with those of fruit flies,
hawk moths and a generalist bird, the parrotlet, we found that
hummingbirds have about the same low induced power losses as
the two insects, lower than that of the generalist bird in slow hovering
flight. Previous analyses emphasized how bird flight muscles have
to overcome wing drag midstroke. We found that high wing inertia
revises this for hummingbirds – the pectoralis has to coordinate
upstroke to downstroke reversal while the supracoracoideus
coordinates downstroke to upstroke reversal. Our mechanistic
analysis aligns with all previous muscle recordings and shows how
early activation helps furnish elastic recoil through stroke reversal to
stay within the physiological limits of muscles. Our findings thus
support Weis-Fogh’s hypothesis that flies and hummingbirds have
converged on a mechanically efficient wingbeat to meet the high
energetic demands of hovering flight. These insights can help
improve the efficiency of flapping robots.

KEY WORDS: Flight, Aerodynamic symmetry, Muscle contraction,
Elastic storage, Aerodynamic force platform

INTRODUCTION
Hovering is one of the most energy-consuming flight modes in
rotorcraft and animal flight (Lasiewski, 1963; Weis-Fogh, 1972;
Suarez et al., 1991; Chai and Dudley, 1995; Leishman, 2006).
Hummingbirds (Trochilidae) are the only vertebrates that can
continuously hover in still air. Unlike other birds, hummingbirds
invert their wings on the upstroke like insects – a remarkable
example of behavioral convergence despite profound differences
in body plans (Warrick et al., 2012). In 1972, Weis-Fogh analyzed
the aeromechanics of hovering Drosophila and hummingbirds
(Weis-Fogh, 1972). His first principle model predicts (i) that
hummingbirds and flies must have converged on harnessing elastic
recoil to beat their wings back and forth in resonance and (ii) that

they need to lift their body weight symmetrically over the
downstroke and upstroke to save energy. These predictions have
been confirmed for Drosophila (Pringle, 1957; Alexander and
Bennet-Clark, 1977; Dickinson and Lighton, 1995; Dickinson
et al., 1999; Muijres et al., 2014); however, testing them for
hummingbirds has resulted in a multi-decade quandary based
on stroke-averaged muscle power models (Weis-Fogh, 1972;
Ellington, 1984). Many studies report two different stroke-
averaged power requirements for hummingbirds: one under the
assumption of perfect elastic storage and one assuming zero elastic
storage (Wells, 1993a,b; Chai and Dudley, 1995, 1996; Chai and
Millard, 1997; Welch et al., 2007; Ortega-Jimenez and Dudley,
2012; Kim et al., 2014).

Previous in vivo airflow measurements and computational fluid
dynamics (CFD) simulations have shown that asymmetry in the
wing chamber (Warrick et al., 2005) restricts the ability of
hummingbirds to support their body weight equally during the
downstroke and upstroke (Warrick et al., 2005, 2009; Wolf et al.,
2013; Song et al., 2014, 2015). The aerodynamic force was,
however, calculated based on shed vorticity or CFD models; it has
never been measured directly throughout the wingbeat. In contrast,
hummingbird muscle function has been established within a
wingbeat through in vivo electromyography (Hagiwara et al.,
1968; Altshuler et al., 2010b; Tobalske et al., 2010; Donovan et al.,
2012; Mahalingam and Welch, 2013), sonomicrometry (Tobalske
et al., 2010) and isometric force measurements (Hagiwara et al.,
1968), but the findings are unique relative to those for other larger
birds. Hummingbirds activate their flight muscles at midstroke,
roughly a quarter period in advance of stroke reversal (Altshuler
et al., 2010b; Tobalske et al., 2010; Donovan et al., 2012;
Mahalingam and Welch, 2013), whereas larger birds activate their
flight muscles around stroke reversal (Biewener et al., 1992;
Tobalske and Biewener, 2008), which cannot be fully reconciled
via scaling (Tobalske, 2016). Further, once activated, the
hummingbird’s pectoralis muscle reaches peak isometric muscle
force (Hagiwara et al., 1968) in under 8 ms – much faster than the
pectoralis of any other bird (e.g. ∼32 ms in starlings: Biewener
et al., 1992; ∼39 ms in pigeons: Biewener et al., 1998; and ∼71 ms
in mallards: Williamson et al., 2001).

To reconcile these unusual attributes of muscle contractile
dynamics, and to determine how hummingbirds could rely on
aerodynamic symmetry and elastic recoil to hover efficiently as
hypothesized for Drosophila (Weis-Fogh, 1972; Dickinson and
Lighton, 1995), we analyzed the instantaneous aerodynamic force
they generate within a wingbeat. We used a new sensitive
aerodynamic force platform (AFP; Fig. 1A) to mechanically
integrate the Navier–Stokes control-surface integral for the
aerodynamic force (Lentink et al., 2015; Hightower et al., 2017;
Lentink, 2018) generated by a hummingbird. We then compared our
vertical aerodynamic force measurements for hummingbirds with
data for fruit flies (following Weis-Fogh), hawk moths (an insect
with similar flight behavior; Willmott and Ellington, 1997;
Wakeling and Ellington, 1977) and parrotlets (a generalist birdReceived 26 January 2018; Accepted 9 August 2018
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not capable of sustained hovering; Chin and Lentink, 2017) to better
understand the specific aerodynamic adaptations hummingbirds
rely on for energy-efficient hovering. Finally, combining the novel,
direct aerodynamic force measurements with detailed wing
kinematics analyses and aeromechanical models, we determined
the torque and power the hummingbird flight muscles must generate
to coordinate the wingbeat during hovering.

MATERIALS AND METHODS
Hummingbirds
Anna’s hummingbirds, Calypte anna (Lesson 1829), were studied
at Stanford University, CA, USA, in March 2017. The procedures
were approved by the Stanford Administrative Panel on Laboratory
Animal Care and carried out under appropriate Federal and
California scientific collecting permits. Over a period of 4 days,
we captured and trained six male Anna’s hummingbirds to hover in
front of a stationary feeder (Fig. 1B). Each bird was then placed in a
custom-developed AFP with a flight volume of 50×50×50 cm3, a
perch and an artificial flower, with ad libitum access to a 25% sugar
solution (Fig. 1A). The AFP was used to measure body weight
support in flight and an instrumented perch was used to measure
resting, take-off and landing ground reaction forces (Fig. 1C). In
addition, we used five synchronized high-speed cameras to measure
wing kinematics (Fig. 2A). The experiment was performed at a field
station to minimize acoustic noise from external sources. Five
flights per bird were recorded (∼4 s each), which included feedings
ranging from 72 to 173 wingbeats. The aerodynamic force
measurements from one flight of birds 3 and 4 were not analyzed,
because of a lack of synchrony between the high-speed cameras and
AFP. The kinematics from all five flights of all six birds were
analyzed. After five recorded flights, each bird was marked with a
temporary non-toxic dot of paint and released at the location of
capture on the same day. We calculated bird mass based on the
average mass recorded by the instrumented perch before and after
each flight (4.9±0.4 g, mean±s.d.; N=6 birds), and found that all
birds gained 4–13% of their initial mass during the experiment.

Time-resolved in vivo force measurements
We measured the aerodynamic force in vivo by developing a new
AFP (Fig. 2A) that is sensitive enough to mechanically integrate the

high-frequency low-amplitude pressure field generated by a
hummingbird within a wingbeat (Fig. 2B). The working principle
and precision of AFPs have been demonstrated using analytical
solutions of the Navier–Stokes control surface formulation
(Lentink, 2018), design guidelines for high-frequency
measurements (Hightower et al., 2017), a quad copter to
demonstrate that independent ground-truth unsteady force
measurements indeed line up within sensor resolution (Lentink
et al., 2015), and in vivo recordings of parrotlets to demonstrate the
effectiveness of the platform for working with freely behaving
animals (Chin and Lentink, 2017). The platform we present here
follows the same working principles, but measures aerodynamic
pressure force at a faster sampling rate (6 versus 1 kHz) and the
resonance frequency of the structure is at least 2.5 times faster (260
versus 102 Hz). The aerodynamic forces (Fig. 2C) generated by the
hummingbird hovering at the center of the volume are transmitted to
the walls of the platform by pressure waves that travel at the speed of
sound (Hightower et al., 2017), which takes about 3% of the
wingbeat period (∼0.7 ms). The vertical aerodynamic force is
measured with a bottom and a top plate, which are custom-built
carbon fiber sandwich panels (50×50 cm2; 498 and 496 g; KVE
Composites Group, Den Haag, The Netherlands). The plates
integrated the vertical pressure force over the ceiling (Fig. 2D)
and floor (Fig. 2E) of the flight volume, which is enclosed by
vertical acrylic side walls. The acrylic sidewalls are not
instrumented, and therefore we ignored the small shear forces due
to boundary layer flow development along the walls, which
constitute only a few percent of the total vertical force (Fig. 2F) in
this setup, at most (Lentink et al., 2015). Thin strips of Saran wrap
cover the small gaps between the plates and side walls to prevent air
leakage while minimizing mechanical coupling (Hightower et al.,
2017). Each plate is supported with three Vee Blocks (VB-375-SM,
Bal-tec, Los Angeles, CA, USA) and corresponding spherical
contact surfaces fixed to the plate, which results in six statically
defined contact points per plate (kinematically constrained).
Tensioned elastic bands secure the connection of the inverted top
plate to the Vee Blocks by counteracting gravity. Each Vee Block is
mounted on a Nano 43 six-axis force/torque sensor (6 kHz sampling
rate, silicon strain gage based, with SI-9-0.125 calibration, 2 mN
resolution, ATI Industrial Automation, Pittsburgh, PA, USA).

A B C

Fig. 1. Aerodynamic force platform setup at low-noise field station. (A) The aerodynamic force platform (AFP) is supported by an 80/20 Inc. aluminium
frame with acrylic side walls; the enclosure allows the bird to fly freely and offers clear optical access for lights and high-speed cameras. (B) Close-up photo of an
Anna’s hummingbird hovering in front of the feeder. (C) Close-up photo of an Anna’s hummingbird inside the chamber, showing how the bird sits on the
instrumented perch between feedings. Low-heat LED lights illuminated white vinyl stickers to provide contrast for image processing.
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Two additional Nano 43 sensors measured forces on the artificial
flower as well as the perch (Fig. 2B,C) to determine the bird’s
weight (averaged over 0.2 s before and after each flight while the
bird was resting). The average rms noise level in the force measured
before takeoff was 4.5 mN (9.4% of body weight) for the AFP and
4.2 mN (8.7% of body weight) for the instrumented perch. The
noise is due to ambient background noise and is close to sensor
resolution (2 mN). The average absolute difference between the
unloaded AFP before and after the flight was 1.2 mN (2.5% of body

weight) while the average difference between the perch forces was
0.8 mN (1.7% of body weight). These are a factor of two lower than
sensor resolution (2 mN) and are therefore inconsequential
(differences may be caused by hummingbird urination and sensor
drift). Vertical forces were filtered offline (8th order digital low-pass
Butterworth filter with cut-off frequency of 180 Hz; ∼4.4 times the
wingbeat frequency; unfiltered traces shown as light colors in
Fig. 2C–F). The 180 Hz cut-off frequency was chosen to filter out
the natural frequencies of the AFP, which were obtained by
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Fig. 2. Vertical aerodynamic force of a hummingbird
measured in vivo with an AFP. (A) The platform and five
3D-calibrated high-speed cameras simultaneously recorded
aerodynamic forces and wing kinematics (artificial flower not
shown). (B) The pressure field generated by the hummingbird
travels to the boundaries of the flight volume at the speed of
sound. The top and bottom plate mechanically integrate the
pressure distribution, which is measured by three force sensors
on each plate. The perch and feeder are both mounted on an
instrumented carbon fiber beam that measures the weight of the
bird during takeoff and landing. F, force; t, time. (C) Combined,
the perch and aerodynamic forces represent the time-resolved
(180 Hz cut-off filter) vertical momentum transfer of the bird to the
earth. The bracketed region is shown on an enlarged scale in
D–F, as the force measured on the top plate (D) and bottom plate
(E), and the net vertical force (F) with the bird’s weight in black
during 10 wingbeats (shaded area, downstroke; light colors are
raw measurements before low-pass filtering).

3

RESEARCH ARTICLE Journal of Experimental Biology (2018) 221, jeb178228. doi:10.1242/jeb.178228

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y



measuring the impulse response of the system. The structural natural
frequencies were measured by tapping the top and bottom plate with
a stiff carbon fiber rod (Fig. 3A–D). A comparison of the frequency
spectrum of the force trace generated by a hummingbird and the
structural natural frequency spectrum of the AFP is shown in
Fig. 3E. The large peak near twice the wingbeat frequency of
∼79 Hz demonstrates that the downstroke and upstroke each
generate a vertical force pulse (which doubles the number of force
extremes within a beat and thus the frequency).

High-speed filming
Five high-speed cameras, four grayscale Phantom Miro M310 and
one color Phantom Miro LC310 (Vision Research, Wayne, NJ,
USA), were synchronized and positioned around the flight chamber
as shown in Figs 1A and 2A. After the bird hovered in front of
the feeder, the cameras (2000 Hz; 490 μs exposure; 1280×800 pixel
resolution) were post-triggered, resulting in flight recordings
(Fig. 4) of 8310 frames (∼4 s). Camera-ready signals were also
sent to the DAQ (USB-6210, National Instruments, Austin,
TX, USA) to synchronize forces and kinematics. In total, five
high-speed recordings of each bird were taken while it was hovering
at the feeder.

3D camera calibration
The high-speed cameras were 3D calibrated by sweeping a wand
with two black spheres at a fixed distance (2.99 mm diameter at
43.70 mm distance apart) through the volume horizontally and
vertically. A single black sphere was also dropped through the
volume to define the gravitational z-axis direction. A direct linear
transformation (DLT) calibration was performed using easyWand5
(Hedrick, 2008), which resulted in wand quality scores of 0.40,
0.58, 0.59, 0.37, 0.63, 0.57 and 0.53 (a score of less than 1 indicates
a good calibration) (Hedrick, 2008; Theriault et al., 2014).

Automated wingbeat segmentation for calculating average
force within a beat
We determined the average vertical aerodynamic force trace during
a wingbeat by analyzing stationary hovering flight at the feeder
(Movie 1). Steady hovering flight was defined as the bird hovering
at the feeder with its bill in the artificial flower, which we
automatically detected with a custom-written MATLAB (R2015b,
MathWorks, Sunnyvale, CA, USA) script. We excluded the first

three and last three wingbeats at the feeder to ensure stationary
hovering. Wingbeat transitions were also determined automatically
by tracking the horizontal position of the centroid of the birds’
silhouettes (side view, Movie 2). These video data were used to
segment the force measurements and automatically identify the
individual force trace for each wingbeat. Next, the average vertical
force trace was determined for a wingbeat, which was subsequently
normalized with the average weight of the bird (as measured by the
perch). Upstroke weight support was calculated by integrating the
vertical aerodynamic force trace over the upstroke and dividing it by
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Fig. 3. The natural frequencies of the AFP are above 250 Hz. The natural frequencies were determined by tapping the top (A) and bottom (B) plate with a
stiff carbon fiber rod to obtain the frequency responses (C and D, respectively). The frequency spectrum from 132 consecutive wingbeats of bird 2 (E) shows
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Fig. 4. Projection of the linearly twisted hummingbird wing model in five
cropped camera views. (A–E) We manually positioned a 3D twisted wing in
such a way that the calibrated projection best fitted each camera view (custom
MATLAB script and GUI). The red lines indicate the wing outline, the blue lines
indicate the twisted span and chord gridlines, and the white crosses indicate
the estimated reference position of the flower. The view in C illustrates how the
wing twist parameter allowed the projected wing to closely match actual wing
shape during extreme twist (frame shows the beginning of the upstroke).
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the integral of vertical aerodynamic force over the entire wingbeat
(upstroke impulse/total wingbeat impulse). Further, we calculated
the flapping frequency, the relative duration of the downstroke and
the total weight support for each wingbeat (Table S1). When we
applied the maximum and minimum stroke angle definition for
wingbeat transition, it did not change the transitions more than one
frame (∼2% of wingbeat period) or upstroke weight support
percentage more than 1% (tracking the kinematics of five wingbeats
per bird). Finally, we determined the normalized weight support
trace within a complete wingbeat for all six hummingbirds; for this,
we first interpolated every force sample to 1000 samples per
wingbeat, then calculated the average force trace (Fig. 5A) over the
wingbeats (n=568–789) of all birds (N=6), totaling 4094 wingbeats.
Average values for each bird are given in Table S1.

Wing kinematics measurement
We determined the kinematics of the right wing by selecting and
analyzing five wingbeats from each bird (N=6 birds; n=5 wingbeats
per bird; 30 wingbeats total). From each of the five independent
flight recordings per bird, onewingbeat was randomly selected from
a subset of wingbeats that matched the average wingbeat frequency.
Next, we projected a 3D linearly twisted planform of the right wing
of the bird in the five camera views (Fig. 4) using the DLT
calibration (Hedrick, 2008) (custom MATLAB GUI). The 3D
representation of the wing was defined by seven parameters and best
fitted across all five views by hand. Three parameters defined the 3D
position (x, y, z) of the wing, and three Euler angles defined the
rotation about the x-, y- and z-axes. The seventh parameter defined
linear twist about the long axis of the wing. These seven parameters
were manually adjusted to best fit the twisted and projected
hummingbird wing outline in all five camera views. Finally, we
filtered the manually tracked wing kinematics parameters with a 4th
order digital low-pass Butterworth filter with a cut-off frequency of
400 Hz (∼10 times the wingbeat frequency).

Wing kinematics parameters
The measured wing kinematics were converted to the standard
decomposition of wing stroke, deviation and angle of attack (Sane
and Dickinson, 2001) (Fig. 6A,C). We improved the description of
wing kinematics by including linear wing twist (Fig. 6B,C),
considering the kinematics of 100 blade element segments (Dickson
et al., 2008; Leishman, 2006) (see Appendix, Fig. A1) and by
determining the projected vertical ‘actuator disk’ area of the wing
(Fig. S1). The wing planform (Fig. 4) fitted well throughout the
wingbeat cycle, because the upstroke to downstroke span ratio is
approximately constant for hovering hummingbirds (Tobalske et al.,
2007). The wing tip location was used to calculate the stroke and
deviation angle with respect to the horizontal stroke plane. We
determined the orthogonal stroke and deviation angular velocities
using the ‘perfect smoother’ developed by Eilers (2003). This
smoother optimized the time derivatives we needed to determine the
wing angular velocity vector (see Appendix, Fig. A1A). Eilers’
smoother (Eilers, 2003) was also used to determine thewing angular
acceleration vector (see Appendix, Fig. A1B). Subsequently, we
divided the wing planform into 100 wing segments, equally spaced
down the span of the wing along the midline. The wing’s angular
velocity and acceleration vectors were crossed with the position
vector of each wing segment to obtain the local velocity and
acceleration over the wingbeat (see Appendix, section A2). The
local aerodynamic angle of attack of the wing was defined as
the angle between the chord vector and the wing velocity vector.
The chord vector at each spanwise wing element pointed from the

midspan line to the leading edge of the wing. As the wing is twisted,
the angle of attack varied along the span (see Appendix, Fig. A1C).
Because the wing is inverted on the upstroke, the angle of attack
with respect to the wing was negative (Kruyt et al., 2014). This
inversion allowed us to use an angle of attack-specific drag
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Fig. 5. More equally distributed weight support decreases induced power
penalty in hummingbirds, Drosophila and hawk moths, compared with
that of parrotlets. (A) Wingbeat-resolved vertical aerodynamic force during
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birds; n=568–789 wingbeats per bird; light green, s.d.). (B) Wingbeat-resolved
vertical aerodynamic force during the downstroke (shaded area) and upstroke
of a Pacific parrotlet (adapted from Chin and Lentink, 2017; N=4 birds;
light purple, s.d.). (C) Wingbeat-resolved vertical aerodynamic force during
the downstroke (shaded area) and upstroke of Drosophila based on
measurements with a robot fly model (adapted from Muijres et al., 2014).
(D) Wingbeat-resolved vertical aerodynamic force for a hawk moth calculated
via computational fluid dynamics simulations based on in vivowing shape and
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hummingbirds support bodyweight during the upstroke, more than a generalist
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coefficient for both the downstroke and upstroke (see Fig. S2 and
Appendix, section A3). The angle of attack was ill defined at stroke
reversal, because wing velocity approached zero. We therefore
calculated the instantaneous local rotational velocity (see Appendix,
Fig. A1D) using the rotational velocity of the root and tip of the

wing (see Appendix, Eqn A4e), which accounted for angular
velocity caused by wing twist and eliminated error caused by the
velocity singularity. Finally, we calculated the area swept by the
wing by creating a point cloud based on the position of the wing
outline over the whole stroke. These points were projected into the
horizontal stroke plane, which we used to calculate the vertical
‘actuator disk’ area of the right wing shown in Fig. S1 (using an
‘alpha hull’ with a probe radius of 10 mm in a custom-written
MATLAB script). To also account for the left wing, we multiplied
the actuator disk area by a factor of two.

Force and power model for hovering flight
A quasi-steady wing element model (Sane and Dickinson, 2002;
Dickson et al., 2008; Song et al., 2015) was used to estimate
the instantaneous aerodynamic force (Fig. 6D,E) and power
(Fig. 6F,G). The aerodynamic force calculation included
translational lift and drag components, as well as rotational and
added mass forces (Fig. 6D; see Appendix, section A4). Drag
contributed to vertical weight support, because the stroke plane is
U-shaped, which points the drag force out of the horizontal plane.
Translational lift and profile drag calculations were based on wing
spinner force measurements with prepared C. anna wings (Kruyt
et al., 2014) (Fig. S2A). Rotational force was calculated with our
measured wing rotational velocity in combination with a rotational
force coefficient derived based on the axis of rotation of a
hummingbird wing (Song et al., 2015) (see Appendix, Eqn A4c).
Finally, the added mass force was calculated based on flat plate
theory (Dickson et al., 2008; Sedov, 1980) in combination with our
measured wing acceleration (see Appendix, Eqn A4f). We
integrated the vertical force contributions over all 100 spanwise
wing elements. Aerodynamic torque (Fig. 7) was calculated by
crossing the aerodynamic force at each blade element with its radial
position from the shoulder (see Appendix, section A8). A similar
quasi-steady wing element model was developed to calculate the
aerodynamic power needed to hover (Fig. 6F,G). This model
included profile, induced, rotational and added mass power
(see Appendix, section A5). Compared with earlier experimental
studies, we improved the profile and induced power calculations as
follows: we calculated profile power by separating measured
translational drag (Kruyt et al., 2014) into its induced and profile
drag components, so that we could use profile drag coefficient as
a function of angle of attack to calculate profile drag and power
(Fig. S2B; see Appendix, Eqn A3b), instead of assuming a constant
profile drag coefficient (Ellington, 1984; Chai and Dudley, 1995,
1996; Altshuler et al., 2010a). As our unique experimental setup
measures vertical force in vivo, we were also able to calculate the
induced power (Leishman, 2006) by using the actual vertical force
generated by the hummingbird (Fig. 5A). Aerodynamic power due
to rotation and added mass were calculated by dot multiplying the
forces with the local wing velocity vector and integrating them for
all wing elements over the whole stroke, which was similar to the
force calculation above. Inertial power is calculated based on wing
mass and radius of gyration for C. anna wings (Fig. 6G; see
Appendix, section A7). We determined the body mass-specific
power (Fig. 6F,G) by dividing the power by the mass of each bird,
and the muscle mass-specific power (Fig. 8) by dividing the power
by the mass of the associated flight muscle. Each muscle was
defined to be involved from the moment the power dropped below
zero through its storage phase and release until the power once again
dropped below zero as shown in Fig. 8B. This definition agrees with
the EMG firing and muscle tension traces (Fig. 7D) as well as the
sign of the torque (Fig. 7B). We adopted EMG traces from the
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pectoralis and supracoracoideus (Fig. 7D) measured for Anna’s
hummingbirds (Altshuler et al., 2010b), because these
measurements were also made for hovering flight. Whereas these
particular EMG signals are representative for hovering Anna’s
hummingbirds, flight muscle EMG traces have multiple peaks
during maximal load-lifting trials in Anna’s hummingbirds
(Altshuler et al., 2010b) and may vary somewhat between species
(Tobalske et al., 2010). Combined, the two flight muscles represent
approximately 25% of the hummingbird’s body mass (Chai and
Dudley, 1995, 1996), with the pectoralis and supracoracoideus
representing approximately 17% (Clark, 2009) and 8%, respectively.
Models and calculations are presented in full detail in the Appendix.

RESULTS
An active upstroke allows for efficient hovering
Our instantaneous force measurements show that Anna’s support
28±1% of their bodyweight during the upstroke (Fig. 5A; N=6

birds; n=568–789 wingbeats per bird). Upstroke weight support is
thus appreciable but asymmetric in hummingbirds as previously
estimated based on flow measurements (Warrick et al., 2005, 2009;
Wolf et al., 2013) and CFDs models (Song et al., 2014, 2015).
Comparing the in vivo hummingbird (Fig. 5A) and in vivo Pacific
parrotlet (Chin and Lentink, 2017) (Fig. 5B) force measurements,
we see that hummingbirds generate appreciably more weight
support during the upstroke than generalist birds in slow or hovering
flight. Whereas hummingbirds also generate more upstroke support
than hawk moths (Fig. 5D), they do not generate as much upstroke
support as fruit flies (Fig. 5C). On average, we measure 99±3% of
the vertical aerodynamic force that Anna’s hummingbirds need to
support their bodyweight in flight. We derived simple aerodynamic
theory (see Appendix, section A1) to show how generating more
equally distributed weight support over the wingbeat reduces the
induced power requirements. Because of the non-linearity of the
induced power equation, minor deviations from generating constant
vertical force have small effects, while larger deviations have an
increasingly greater induced power penalty (in the form of a
temporal cost factor; see Appendix, Eqn A1e; Fig. 5F). This
explains why we find that hummingbirds incur a somewhat lower
penalty (1.25±0.03) than Drosophila (1.29), because weight
support fluctuates more in Drosophila, whereas both incur a lower
cost than the Pacific parrotlet (1.35). Overall, the hummingbird
induced power penalty is similarly low in hummingbirds,
Drosophila and hawk moths, compared with that in Pacific
parrotlets (Fig. 5F). This mechanistically underpins why
hummingbirds converged closer towards generating more
upstroke weight support, relative to their generalist bird ancestors
(McGuire et al., 2014), to reduce the cost of sustained hovering
flight.

Quasi-steady model predicts high inertial requirements
The quasi-steady aerodynamic force model (Fig. 6; N=6 birds; n=5
wingbeats per bird) for Anna’s hummingbirds accounts for 64±4%
of bodyweight support and predicts that the upstroke contributes
39±1% to the total quasi-steady vertical force (Fig. 6E). Stroke-
averaged vertical force is composed of ∼84% translational lift, ∼0%
translational drag, ∼5% rotational force and ∼11% added mass
force (Fig. 6D). Our detailed 3D kinematic wing model showed
that hummingbird wings twist up to −38 deg during the
downstroke and up to 62 deg during the upstroke (Fig. 6C).
Dynamic changes in wing twist affects both the magnitude and
radial distribution of rotational and added mass forces acting on the
wing during pronation and supination. The model’s capacity to
predict most of the weight support in hummingbirds is similar to
predictions for Drosophila (Dickinson et al., 1999; Dickson et al.,
2008) but below 100% because of additional effects not captured
by a quasi-steady model. Therefore, aerodynamic power must also
be underestimated, because induced power is proportional to
vertical aerodynamic force to the power of 1.5 (see Appendix,
Eqn A1b). To overcome these underestimates (Weis-Fogh, 1972;
Chai and Dudley, 1995; Kruyt et al., 2014), as well as the over-
prediction of upstroke weight support, we calculated the induced
power (Fig. 6F) directly based on the measured in vivo vertical force
(Fig. 5A). The total aerodynamic power consists of ∼63% induced
power, while profile power represents ∼23%. The power due to
rotational force and to added mass force is relatively small,∼7% and
∼7%, respectively (Fig. 6F). In total, Anna’s hummingbirds need a
stroke-averaged aerodynamic power of 35±1 W kg−1 of body mass,
with peak values of ∼100 W kg−1 (Fig. 6G). Whereas these
sustained power values are amongst the highest reported for skeletal
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are activated roughly a quarter of a wingbeat period before stroke reversal in
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(see Fig. S3).
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muscle, even more power is needed to overcome wing inertia at
stroke reversal (Wells, 1993b). With the inertia added, the
hummingbird flight muscles, the pectoralis and supracoracoideus,
need to deliver a peak power of almost 200 and 150 W kg−1 of body
mass, respectively, to beat the wings back and forth. This power
value cannot be explained with existing theories unless elastic
storage in the flight apparatus is assumed (Weis-Fogh, 1972; Chai
and Dudley, 1995, 1996; Ellington, 1984; Wells, 1993b) (Fig. 6G).

DISCUSSION
Wing inertia determines muscle activation timing
To better understand hummingbird muscle function, we calculated
(see Appendix, section A8) the net torque around the shoulder joint,
wingbeat resolved based on wing drag and inertia (Fig. 7A). The net
torque switches direction at midstroke for both flight muscles,
becausewing inertia is high and the aerodynamic drag is insufficient
to decelerate the wing (Fig. 7B). The antagonistic flight muscle pair
has to generate the instantaneous net torque needed to overcome
wing inertia and drag, which forms an aero-mechanical torque loop
throughout the wingbeat (Fig. 7C). The effect of wing inertia
dominating aerodynamic drag is that it tilts the torque loop, as
predicted based on first principles by Weis-Fogh (1972). This
causes wing torque to peak at stroke reversal, instead of midstroke,
and dictates the effective work that the pectoral and
supracoracoideus muscle–tendon units need to deliver together.
This ‘internal’ net muscle-generated torque×angular displacement
has to be equal to (or larger than) the ‘external’ net wing
torque×angular displacement (depending on friction and other
internal losses; Weis-Fogh, 1972). We can determine which
muscle–tendon unit has to perform which effective work, because
the pectoralis delivers the net torque (muscle force×lever arm)
required for upstroke to downstroke reversal, while the
supracoracoideus coordinates downstroke to upstroke reversal.
The antagonistic flight muscle pair must accommodate this peak
inertial torque requirement to reverse the stroke direction. The
pectoralis (main downstroke muscle; Altshuler et al., 2010b;
Tobalske et al., 2010; Donovan et al., 2012; Mahalingam and

Welch, 2013) is the primary muscle that can pull to generate the
positive braking torque required to coordinate the upstroke to
downstroke reversal. Similarly, the supracoracoideus (main
upstroke muscle; Altshuler et al., 2010b; Tobalske et al., 2010;
Donovan et al., 2012; Mahalingam and Welch, 2013) has to be
activated well before the start of the upstroke to generate the
negative braking torque required for downstroke to upstroke reversal
(Fig. 7B). Indeed, it has been shown (Altshuler et al., 2010b;
Donovan et al., 2012) that Anna’s hummingbirds activate the
pectoralis and supracoracoideus a quarter of a wingbeat in advance
of the upstroke–downstroke and downstroke–upstroke transition,
respectively (Fig. 7D) – approximately a quarter-stroke earlier than
found in other birds (Altshuler et al., 2010b; Tobalske et al., 2010;
Mahalingam and Welch, 2013). The activation appears to be well
timed, because Hagiwara et al. (1968) found that the pectoralis of
Anna’s hummingbirds reaches peak isometric force in under 8 ms
after activation in situ, regardless of whether it is activated by a
single pulse (twitch) or a pulse train at 23 or 53 Hz [a range that
encompasses Anna’s hummingbird wingbeat frequency of 41 Hz,
although Hagiwara et al. (1968) even showed noticeable force peaks
with tetanus from stimulations of up to 300 Hz; Fig. S3]. Comparing
the time to peak isometric force of Anna’s hummingbirds (8 ms;
4.9 g body mass) with values for the Etruscan shrew extensor
digitorum longus (11 ms; 1.8 g body mass), the fastest mammal
locomotory muscle recorded to date (Peters et al., 1999; Jürgens,
2002), it becomes clear that scaling effects cannot fully explain the
speed of Anna’s hummingbird pectoralis muscle. It is reasonable to
assume the pectoralis and supracoracoideus are similarly fast in
Anna’s hummingbirds, because the fiber type of both flight muscles
is uniformly fast oxidative glycolytic (Donovan et al., 2012; Welch
and Altshuler, 2009). These fibers enable Anna’s hummingbird
pectoralis to reach peak force faster than the so-called ‘superfast’
muscles that control the dove’s trill (Elemans et al., 2004). Superfast
muscles in other animals are not generally known to be primary
motors for locomotion (Fuxjager et al., 2016), because they generate
low specific power at high frequencies (Elemans et al., 2004, 2008;
Fuxjager et al., 2016; Rome, 2006). Similar early activation in frog
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muscle–tendon units corresponds to a more spring-like work loop
that stores elastic energy, albeit imperfectly (Sawicki et al., 2015).
Assuming isometric muscle measurements are a reasonable
approximation to estimate the time between activation and peak
muscle force in vivo, we find that the resulting peak muscle force
measured by Hagiwara et al. (1968) (Fig. 7D) aligns with the peak
torque (muscle force×moment arm) demand at stroke reversal that
we calculated (Fig. 7B). It would require a further 6 ms delay (¼
wingbeat) in muscle force development due to contractile kinetics
for the muscle peak to instead coincide with maximum wing
velocity, much longer than the 2 ms uncertainty we found in the
definition of stroke reversal. Whereas torque peaks at stroke
reversal, power demand (Fig. 6G) is approximately zero, because
wing angular velocity reaches zero. This is consistent with the near-
zero instantaneous strain rate in the pectoralis muscle (low power) at
stroke reversal in Rufous hummingbirds (Tobalske et al., 2010).

Recoil in the flight apparatus explains peak instantaneous
power
In the absence of elastic storage, a hummingbird would have to
generate 195±11 and 347±29 W kg−1 of muscle mass in the
pectoralis and supracoracoideus, respectively (averaged over a full
wingbeat, assuming negative power is free; Fig. 8A). By storing all
negative power elastically and releasing it to accelerate the wing
again, the hummingbird would only have to generate 105±11 and
220±16 W kg−1 of power in the pectoralis and supracoracoideus,
respectively (Fig. 8A). Weis-Fogh and Alexander (1977) estimated
the theoretical maximum is about 250 W kg−1 muscle mass based
on hummingbirds’ physiological limits, while Pennycuick and
Rezende (1984) estimated it to be as high as 430 W kg−1 muscle
mass. Josephson (1993) suspected these are overestimates due to
unrealistic muscle contractile parameter assumptions and a failure to
account for activation/inactivation time. Although these power
outputs are already very high for vertebrates, the flight muscles are
capable of delivering over three times more profile power (Altshuler
et al., 2004) during maximum load-lifting trails (Chai and Millard,
1997; Altshuler et al., 2004; Skandalis et al., 2017). Using
additional load-lifting data from Anna’s hummingbirds (Altshuler
et al., 2010b; Segre et al., 2015), we confirm this estimate and
calculate that the induced and inertial power also triple during burst
muscle performance (see Appendix, section A10). Further, the
nominal instantaneous total power peaks in hovering hummingbirds
are between 1000 and 2000 W kg−1 muscle mass for each muscle
(Fig. 8B), exceeding peak power during burst takeoff in quail
(1121 W kg−1; Askew and Marsh, 2001) and matching peak power
in projecting chameleon tongues, which use elastic storage to
achieve it (1892 W kg−1; Anderson and Deban, 2010). It is
therefore more parsimonious to assume peak power is achieved
by releasing stored elastic energy, especially because this
extraordinary power output has to be sustained over many
thousands of contraction cycles during foraging flight. Whereas
physiological limits do not enable muscles to deliver such high
power over so many cycles, springs can generate extreme
instantaneous power with similar double frequency traces using
near-zero work per cycle. Another way to visualize the opportunity
for elastic storage in hummingbirds is to plot the aero-mechanical
torque loop in the reference frame of each muscle. During forward
flight, a generalist starling (at 13.7 m s−1; Biewener et al., 1992),
magpie (at 6 m s−1; Dial et al., 1997), budgerigar (at 4 m s−1;
Ellerby and Askew, 2007) and pigeon during slow flight (at
3.9 m s−1; Tobalske and Biewener, 2008) have a relatively upright
pectoralis work loop with minimal negative work during the end of

the upstroke. The supracoracoideus, however, generates more
negative work, which may be stored elastically in the
supracoracoid tendon (Tobalske and Biewener, 2008). In contrast,
the torque loop of hovering hummingbirds is tilted as a result of high
wing inertia, allowing a larger area of negative work while
decelerating the wing (Fig. 8C,D). They can efficiently store the
high instantaneous negative work and release it again as positive
work via elastic recoil (Roberts et al., 1997; Dickinson et al., 2000;
Biewener, 2003). Elastic energy can be stored in tendons
(Mahalingam and Welch, 2013; Alexander, 2002) and the muscle
itself (Alexander and Bennet-Clark, 1977; Dickinson et al., 2000;
Sawicki et al., 2015). Finally, because wing inertia dominates
aerodynamics and our predictions for inertial effects are grounded in
established dynamics theory (see Appendix, Fig. A2 and section
A9), our understanding of how hummingbirds use elastic recoil to
tune their wingbeat are robust to aerodynamic modeling errors.

Conclusion
Our analysis shows that hummingbirds and Drosophila are about
equally aerodynamically efficient based on the induced power
required to sustain hovering. Further, three lines of wingbeat-
resolved evidence show that the most parsimonious explanation for
the extreme instantaneous performance of the hummingbird flight
apparatus is elastic recoil. Only recoil can reconcile (i) the
instantaneous peak torque at stroke reversal (Fig. 7B), which
requires exceptional muscle work, with (ii) the early activation
(Altshuler et al., 2010b; Donovan et al., 2012) and fast contractile
dynamics (Hagiwara et al., 1968) of Anna’s hummingbird flight
muscle (Fig. 7D), and (iii) the peak instantaneous power of well over
1000 W kg−1 for each flight muscle–tendon unit (Fig. 8B), in
concert. Overall these findings support Weis-Fogh’s hypothesis that
Drosophila and hummingbirds must have converged on similarly
low induced power and inertial cost to sustain hovering. The finding
that recoil is critical to overcome the inertia of flapping wings at low
energetic cost in hummingbirds shows how current bird-sized
flapping aerial robots (Lentink et al., 2009; Keennon et al., 2012)
could be made dramatically more energy efficient by adding a
spring in their flap. Future studies can build upon these results by
exploring the diversity in the flight apparatus of birds (Tobalske,
2016) and bats (Riskin et al., 2012; Konow et al., 2017), both in
laboratory settings and in more realistic, ecological settings with
animals entering the platform voluntarily to feed (see ruggedized
platform in Movie 3).

APPENDIX
Our hummingbird aerodynamics models and equations developed
here integrate and expand the existing quasi-steady aerodynamics
model for insect flight (Dickson et al., 2008) and the blade element
model for rotorcraft (Leishman, 2006).

A1: induced power penalty
To determine how hummingbirds would benefit from supporting
bodyweight symmetrically within a wingbeat, we considered the
downward acceleration of air through the stroke plane that generates
a vertical force (Leishman, 2006; Ellington, 1984; Chai and Dudley,
1995; Weis-Fogh, 1972). The resulting high-velocity wake below
the bird has increased momentum and kinetic energy. The increase
in kinetic energy requires ‘induced’ power, Pind, delivered by the
flight muscles to the wings and is proportional to vertical force
raised to the power of 1.5. This cost function intuitively shows that it
is more efficient to generate constant thrust throughout the stroke
because any decrease in vertical force during one part of the
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wingbeat will need to be compensated for by an equivalent increase
in force during another part of the wingbeat, which will cost more
power than is saved. We expanded the corresponding ‘actuator disk’
theory (Leishman, 2006; Chai and Dudley, 1995; Weis-Fogh, 1972;
Norberg, 2012) to determine the analytical fitness function that
relates the actual average induced power, �Pind, to the theoretical
minimum induced power, �Pind;min, as a function of instantaneous
weight support over the wingbeat. The average induced power, �Pind,
was calculated (Leishman, 2006; Ellington, 1984) by multiplying
the robot or animal’s weight, W, by the velocity of the induced
flow, vind:

vind ¼
ffiffiffiffiffiffiffiffi
W

2rA

s
; ðA1aÞ

where ρ is the density of air and A is the area swept by the wings.
This allowed us to describe �Pind as:

�Pind ¼ k

ffiffiffiffiffiffiffiffi
W 3

2rA

s
; ðA1bÞ

where κ is the induced power factor that accounts for tip losses, non-
uniform inflow and other non-ideal effects (Leishman, 2006). A
value of κ=1.2 is typically assumed for bird flapping flight
(Norberg, 2012; Pennycuick, 2008; Tobalske et al., 2003).
Ellington (1984) broke this induced power factor up into a spatial
correction factor, σ, and a temporal correction factor, τ:

k ¼ 1þ sþ t: ðA1cÞ
Given we measured the temporal distribution of the vertical force
directly, we can quantify the additional penalty that an animal incurs
by generating a time-varying wake. To decouple, we define κσ to be
the spatial cost factor (with κσ=1 corresponding to a uniform wake)
and κτ to be the temporal cost factor (with κτ=1 corresponding to a
constant wake). Using Ellington’s estimates (Ellington, 1984), we
assume a value of σ=0.1, which leads to κσ=1.1. We can then
describe the ideal average induced power as:

�Pind;ideal ¼
ffiffiffiffiffiffiffiffi
W 3

2rA

s
ðA1dÞ

and the induced power including losses due to temporal force
fluctuation as:

�Pind;temp ¼ 1

T

ðT
0

Pind;tempðtÞdt ¼ 1

T

ðT
0

ffiffiffiffiffiffiffiffiffiffiffi
FðtÞ3
2rA

s
dt; ðA1eÞ

where T is the wingbeat period and F(t) is the aerodynamic vertical
force, which must be equal to the animal’s weight on average to
enable sustained hovering. The induced power cost due to time-
varying vertical force can be quantified by calculating the ratio with
the ideal induced power:

kt ¼
�Pind;temp

�Pind;ideal
¼ 1

T

ðT
0

ffiffiffiffiffiffiffiffiffiffiffi
FðtÞ3
W 3

s
dt ¼ 1

T

ðT
0

FðtÞ
W

� �1:5

dt: ðA1f Þ

This cost factor is equal to 1 if F(t)=W, but will be greater than 1 if
the vertical force varies during the wingbeat. As we measured the
term F(t)/W in vivo, we can directly calculate the induced power
factor that the animal incurs. The calculated induced power
temporal cost factor for Anna’s hummingbirds, parrotlets,
Drosophila and hawk moths is shown in Fig. 5F.

A2: wing element velocity and acceleration
For our aerodynamic force and power model, we calculated radial
force distribution, which depended on the wings’ radial velocity and
acceleration distribution, calculated below. Let φ be the stroke angle
and γ be the deviation angle of the right wing as defined in
Fig. 6A.We used Eilers’ perfect smoother (Eilers, 2003) to calculate
the derivatives of the stroke and deviation angle with respect to time,
_f and _g. The resultant wing angular velocity vector, _~u, with
components _ux, _uy and _uz is:

_~u ¼
_ux
_uy
_uz

2
64

3
75 ¼

_g sinf
� _g cosf

_f

2
4

3
5: ðA2aÞ

These three components are plotted in Fig. A1A. The derivative of

the wing angular velocity vector with respect to time, €~u, with
components €ux, €uy and €uz, was again determined using Eilers’
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Fig. A1. Wingtip and radial angle of attack kinematics for bird 2. (A) The three components of the wing’s angular velocity vector show that the vertical
component (z) was largest, because it defined velocity in the horizontal stroke plane. (B) The angular acceleration vector for the wing was calculated as the
derivative of the angular velocity vector: again, the vertical component (z) was largest because it defined acceleration in the horizontal stroke plane. (C) The angle
of attack varied from the wing root to the tip because the wing was twisted spanwise relative to the incoming velocity. (D) As a result of dynamic wing twist,
the rotational velocity of the wing also varied spanwise. The angle of attack and the associated rotational velocity are shown for five of 100 equally spaced
wing elements.
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perfect smoother (Fig. A1B). We then calculated the angular
velocity and acceleration vector of each wing element by estimating
the wing element position vector in space, ~pe, as follows:

~pe ¼ re

cosf cos g
sinf cos g

sin g

2
4

3
5; ðA2bÞ

where re is the distance to each wing element. This allowed the
velocity,~ue, at each element to be calculated by:

~ue ¼ _~u�~pe ðA2cÞ
and the acceleration,~ae, to be calculated by:

~ae ¼ €~u�~pe: ðA2dÞ

A3: profile drag coefficient
We improved upon existing drag calculations (Ellington, 1984; Chai
and Dudley, 1995, 1996; Altshuler et al., 2010a) by determining the
profile drag coefficient as a function of angle of attack. For this, we
used the measured lift, CL, and drag, CD, coefficients of spinning
C. anna wings from Kruyt et al. (2014) (Fig. S2A) in which CD

included both profile and induced drag as a function of angle of
attack. Based on these coefficients, we separated the total
drag power into its induced (see Appendix, Eqn A1b) and profile
components as follows:

2 � 1
2
rðr̂3RÞ3SCDðaÞ _f3¼ k

ffiffiffiffiffiffiffiffi
F3

2rA

s
þ2 � 1

2
rðr̂3RÞ3SCD;prof ðaÞ _f3

;

ðA3aÞ

where the vertical force is F ¼ 2 � 1
2
rðr̂2RÞ2S CLðaÞk k _f2

, R is the

wing radius, r̂2 and r̂3 are the second and third moments of area
(Kruyt et al., 2014), and S is the surface area of the wing. Replacing
F and rearranging this equation to get an expression for CD,prof, we
obtained:

CD;prof ðaÞ ¼ CDðaÞ � kðrðr̂2RÞ2S k CLðaÞ k _f
2Þ3=2

rðr̂3RÞ3S _f3 ffiffiffiffiffiffiffiffi
2rA

p

¼ CDðaÞ � k
r̂2
r̂3

� �3
ffiffiffiffiffiffi
S

2A

r
ðk CLðaÞ kÞ3=2: ðA3bÞ

We next substituted the specific wing geometry parameters
from Kruyt et al. (2014) (r̂2¼0:50, r̂3¼0:55, S=680 mm2,
A=7260 mm2), and assumed (Norberg, 2012; Pennycuick, 2008;
Tobalske et al., 2003) κ=1.2, to calculate the profile drag coefficient
as a function of angle of attack (Fig. S2B).

A4: quasi-steady vertical force
To calculate the instantaneous vertical force, we used a quasi-steady
model for flapping animal flight (Dickson et al., 2008; Song et al.,
2015; Dickinson et al., 1999). This model predicted the
translational, rotational and added mass forces on each wing
element over the wingbeat, of which we took the vertical
components. The translational lift force of each wing element was:

FL;e ¼ 1

2
rce k~ue k2 CLðaeÞDr; ðA4aÞ

where ce is the chord length of the wing element, Δr is the width of
the element and αe is the angle of attack of the element. Similarly,

the translational profile drag force of each wing element was
calculated by:

FD;e ¼ 1

2
rce k~ue k2 CD;prof ðaeÞDr: ðA4bÞ

The induced drag is assumed to act perpendicular to the induced
flow, so does not contribute to the vertical force. The rotational force
at each wing element was calculated by (Dickson et al., 2008):

FR;e ¼ Crrvec
2
e k~ue k Dr; ðA4cÞ

where Cr is the rotational force coefficient and ωe is the rotational
velocity of each element. The theoretical value for the rotational
force coefficient was calculated by (Dickson et al., 2008; Fung,
2008; Sane and Dickinson, 2002):

Cr ¼ pð0:75� x̂0Þ; ðA4dÞ
where x̂0 is the non-dimensional axis of rotation. Song et al. (2015)
calculated an average value of x̂0¼0:453 for five representative
chord locations for hovering ruby-throated hummingbird
kinematics. We rounded this value to x̂0¼0:5 (which represents
the estimated accuracy of this number for C. anna) to calculate the
rotational force coefficient for Anna’s hummingbirds in our study,
Cr=0.8. To determine the rotational force, we calculated the
rotational velocity, ωe, by first finding the rotational velocity of
the wing base, ωb, and then the rotational velocity of the wing tip
with respect to the base due to wing twist, ωt. The rotational velocity
at each wing element (Fig. A1D) was then:

ve ¼ vb þ re
R
vt; ðA4eÞ

where R is the radius of the wing. The addedmass force at each wing
element was thus calculated as:

FA;e ¼ rpc2e
4

~ue �~ae
k~ue k sinðaeÞþ k~ue k ve cosðaeÞ

� �
Dr: ðA4 f Þ

This term accounted for the additional air the wing had to accelerate
as it flapped. The rotational and added mass forces acted normal to
the back surface of the wing. As the wing was twisted, this normal
vector changed with the radial position of the wing element. We
accounted for wing twist in our vertical force calculation, which
sums up the vertical component of the translational, rotational and
added mass forces in a custom-written MATLAB script.

A5: quasi-steady power model
We extended existing aerodynamic power models (Song et al.,
2015; Ellington, 1984; Chai and Dudley, 1995, 1996; Altshuler
et al., 2010a; Norberg, 2012) with an improved calculation of profile
and induced power to estimate the instantaneous power required to
hover. The profile power at each wing element, PP,e, was calculated
by:

PP;e ¼ 1

2
rce k~ue k3 CD;prof ðaeÞDr; ðA5aÞ

where CD,prof is the profile component of the drag coefficient
calculated above (see Appendix, Eqn A3b) and plotted in Fig. S2B.
The instantaneous induced power was calculated more precisely by
substituting the measured in vivo vertical force in established actuator
disk theory (Leishman, 2006; Ellington, 1984; Chai and Dudley,
1995, 1996; Altshuler et al., 2010a; Norberg, 2012). The induced
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power for both wings combined, PI(t), was thus calculated as:

PIðtÞ ¼ ks

ffiffiffiffiffiffiffiffi
1

2rA

s
FðtÞ1:5: ðA5bÞ

The rotational and added mass power required at each wing element
were calculated by dot multiplying the force vectors by the incoming
air velocity ð�~ueÞ:

PR;e ¼ �~ue �~FR;e ðA5cÞ
PA;e ¼ �~ue �~FA;e: ðA5dÞ

To get the total instantaneous aerodynamic power, Paero(t), we
summed the power contribution from each wing element, multiplied
by 2 to account for the two wings, and added the induced power
based on the in vivo measured vertical force:

PaeroðtÞ ¼ 2
X
e

PP;eðtÞ þ 2
X
e

PR;eðtÞ

þ 2
X
e

PA;eðtÞ þ PIðtÞ: ðA5eÞ

The calculation of induced power based on in vivo force
measurement allows us to quantitatively estimate the total
instantaneous aerodynamic power.

A6: simplified wingbeat-averaged aerodynamic power
estimate
To determine how our stroke-resolved measurements compared to
previous stroke-averaged actuator disk models, we analyzed the
former and determined the stroke averaged profile drag coefficient
and induced power cost factor needed to match our power results.
The average profile power for one wing, �PP, was estimated by:

�PP ¼ 1

T

ðT
0

1

2
rSCD;prof jv3ðtÞjdt

¼ 1

T

ðT
0

1

2
rðr̂3RÞ3SCD;prof j _f3ðtÞjdt

¼ 1

2
rðr̂3RÞ3SCD;prof

1

T

ðT
0

j _f3ðtÞjdt: ðA6aÞ

where CD;prof is the average profile drag coefficient, v(t) is the wing
velocity, r̂3 is the third moment of area and _fðtÞ is the stroke angular
velocity. By assuming a harmonic stroke, we can write:

fðtÞ ¼ �F cosð2pftÞ; ðA6bÞ
_fðtÞ ¼ F2pf sinð2pftÞ; ðA6cÞ

where Φ (in radians) is the stroke amplitude (half of the total swept
stroke angle) and f is the wingbeat frequency (1/T ). The integral
then becomes:

ðT
0

j _f3ðtÞjdt ¼ ðF2pf Þ3
ðT
0

jðsinð2pftÞÞ3jdt ¼ 32

3
F3p2f 2 ðA6dÞ

and the average profile power over the wingbeat for one wing is:

�PP ¼ 16p2

3
rðr̂3RÞ3SCD;profF

3f 3: ðA6eÞ

We found that a value for CD;prof of 0.16 best matched our
stroke-averaged high-fidelity profile power calculation. This
equation is similar to the one derived by Ellington (1984) with
the exception that the stroke is assumed to be harmonic, which
approximates hummingbirds well (Fig. 6C). The average induced
power, �PI, for the bird can be calculated based on the weight,W, and
the actuator disk area swept by the wing, A=2 Φ R2. If vertical
force is assumed to be equal to weight throughout the stroke, the
power will be underestimated. To correct for this, we use the
spatial and temporal cost factors introduced above (see Appendix,
section A1):

�PI ¼ kskt

ffiffiffiffiffiffiffiffi
W 3

2rA

s
: ðA6f Þ

We use κσ=1.1 and κτ=1.25 to best match our stroke-averaged
high-fidelity induced power calculation. As profile and induced
power alone make up 86% of the modeled total aerodynamic power,
�Paero, we approximated the aerodynamic power without detailed
kinematics as:

�Paero � 2�PP þ �PI

¼ 32p2

3
rðr̂3RÞ3SCD;profF

3f 3 þ kskt

ffiffiffiffiffiffiffiffi
W 3

2rA

s
: ðA6gÞ

A7: inertial power
The inertial power needed to accelerate and decelerate the wing is
often ignored in insect studies, because a mechanism for elastic
storage has been identified in the thorax that can cancel inertial
power out. It is still unknown how and with what efficiency
hummingbirds can store elastic energy during their wingbeat. To
determine the physiological consequences of different elastic
storage scenarios, we calculated inertial power. Inertial power,

Pinertial, is the dot product of the wing torque and angular velocity,
_~u

(Fig. A1A). Torque is the moment of inertia about the wing base, I,

times the angular acceleration, €~u (Fig. A1B). The inertial power of
one hummingbird wing is thus:

PinertialðtÞ ¼ Ið€~uðtÞ � _~uðtÞÞ: ðA7aÞ
The moment of inertia of the wing can be calculated by dividing the
wing into small chord strips and measuring their masses, mi, and
distances, ri, from the wing base:

I ¼
X

mir
2
i : ðA7bÞ

The non-dimensional radius of gyration, r̂2ðmÞ, is defined such that:
I def mwðr̂2RÞ2; ðA7cÞ

where mw is the mass of one wing and R is the wing length. Using
the following equation, we calculated an r̂2ðmÞ value (0.265) using
the radial distance and mass of 10 wing chord strips from a male
Anna’s hummingbird (Ortega-Jimenez and Dudley, 2012) (N=1):

r̂2ðmÞ ¼ 1

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
mir

2
iP

mi

s
: ðA7dÞ

As a second measure, we calculated the non-dimensional r̂2ðmÞ
value for another species of hummingbird (Amazilia fimbriata
fluvaitilis) based on Weis-Fogh’s inertial wing measurements. By
combining Weis-Fogh’s (1972) published wing moment of inertia,
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wing mass and wing length, we calculated the r̂2ðmÞ to be 0.276,
which is only 4% larger than our Anna’s hummingbird value:

r̂2ðmÞ ¼ 1

R

ffiffiffiffiffiffiffi
I

mw

r
: ðA7eÞ

In addition, we compared the r̂2ðmÞ measurements from Wells
(1993b) for broad-tailed (Selasphorus platycercus: 0.263±0.017,
N=4) and rufous (Selasphorus rufus: 0.248±0.007, N=4)
hummingbirds and found that our Anna’s hummingbird
calculations were within the same range (1% and 6% smaller,
respectively). We then used the left and right wing mass (0.1135
and 0.0916 g) and the body mass (4.16 g; N=1 provided by
D. L. Altshuler at The University of British Columbia, Canada) to
calculate the average (single) wing mass as a fraction of body mass,
which is 2.47%. This percentage was used in combination with our
measured bird mass and wing length to estimate the wing mass and
calculate each moment of inertia.
The wing rotation origin was calculated by fitting a line through

the midspan of thewing at every instant of the wingbeat. The best-fit
intersection of all of these lines was defined to be the wing rotation
origin that the wing radius was measured from, as well as the
rotation angles. This is a more accurate location than the physical
shoulder, as it is mathematically the best-fit origin of rotation for the
wing planform. Over each wingbeat, we assumed a constant wing
length and thus moment of inertia, which is fair for hovering
hummingbirds (Tobalske et al., 2007).
While this detailed wing inertia model required 3D kinematic

tracking, it is also possible to simplify the model. Without detailed
kinematics, one can still estimate the inertial power requirements
because the hummingbird stroke is harmonic within very good
approximation (Fig. A2). As defined above (see Appendix,
Eqn A6b), the stroke angle, φ, velocity, _f, and acceleration, €f,
can be simplified to:

fðtÞ ¼ �F cosð2pftÞ; ðA7f Þ
_fðtÞ ¼ 2Fpf sinð2pftÞ; ðA7gÞ

€fðtÞ ¼ 4Fp2f 2 cosð2pftÞ: ðA7hÞ
The inertial power of one wing then becomes:

Pinertial single wingðtÞ ¼ 8IF2p3f 3 sinð2pftÞ cosð2pftÞ
¼ 4IF2p3f 3 sinð4pftÞ; ðA7iÞ

so the total inertial power can be estimated by:

Pinertial both wingsðtÞ ¼ 8IF2p3f 3 sinð4pftÞ: ðA7jÞ

A8: quasi-steady torque model
To calculate the torque components around the wing’s shoulder
joint (~QL;e,~QD;e,~QR;e and~QA;e, representing the lift, drag, rotational
and added mass torques, respectively), we took the cross-product of
the position of each wing element with the force on each element
(see Appendix, section A4 for the force equations):

~QL;eðtÞ ¼ �~peðtÞ �~FL;eðtÞ ðA8aÞ
~QD;eðtÞ ¼ �~peðtÞ �~FD;eðtÞ ðA8bÞ
~QR;eðtÞ ¼ �~peðtÞ �~FR;eðtÞ ðA8cÞ
~QA;eðtÞ ¼ �~peðtÞ �~FA;eðtÞ: ðA8dÞ

The negative sign ensured that this quantity is the torque exerted
by thewing, rather than the torque acting on thewing. The pectoralis
and supracoracoideus primarily power motion in the horizontal
plane during hovering (Fig. A1A,B). Therefore, we took the vertical
z component of these torques as we summed the contributions from
each element:

QLðtÞ ¼
X
e

ð~QL;eðtÞ � ẑÞ ðA8eÞ

QDðtÞ ¼
X
e

ð~QD;eðtÞ � ẑÞ ðA8f Þ

QRðtÞ ¼
X
e

ð~QR;eðtÞ � ẑÞ ðA8gÞ

QAðtÞ ¼
X
e

ð~QA;eðtÞ � ẑÞ; ðA8hÞ

where ẑ is a unit vector of [0 0 1]. Lastly, we calculated the torque
due to the induced drag,QI, which acted parallel to the induced flow
(vertical z direction). As the induced power is torque times the
z component of angular velocity, we calculated the induced torque
as follows:

QIðtÞ ¼ 1

2
� PIðtÞ
ð_~uðtÞ � ẑÞ

; ðA8iÞ

where the factor of 1/2 accounted for the torque of a single wing.
This equation introduced singularities at stroke transitions where
angular velocity is zero. Because of measurement error, the induced
power and angular velocity do not simultaneously approach zero at
wingbeat transitions. Small phase delay errors between power and
angular velocity cause the singularity, which we negated
numerically through a linear fit between 40% and 60% of the
wingbeat for the downstroke to upstroke transition and between
90% and 10% of the wingbeat for the upstroke to downstroke
transition. Because induced torque is insignificant relative to inertial
torque (Fig. 7B), this simplification does not change our
conclusions. The aerodynamic torque was calculated by summing
the lift, drag, rotational, added mass and induced components:

QaeroðtÞ ¼ QLðtÞ þ QDðtÞ þ QRðtÞ þ QAðtÞ þ QIðtÞ: ðA8jÞ
Finally, for our model, we calculated the inertial torque in the
vertical direction by multiplying the z component of the angular
acceleration by the moment of inertia:

QinertialðtÞ ¼ Ið€~uðtÞ � ẑÞ: ðA8kÞ
To further simplify, by assuming a harmonic stroke in the horizontal
plane, we can insert the stroke angular acceleration, €fðtÞ, explained
above (see Appendix, Eqn A7h), to get:

QinertialðtÞ ¼ Ið€fðtÞÞ ¼ 4IFp2f 2 cosð2pftÞ: ðA8lÞ

A9: simplified wingbeat-resolved power and torque model
To mechanistically underpin the biomechanics that allow a
hummingbird to beat its wings at high frequency in hover, we
modeled the wingbeat. Because the wingbeat is harmonic within
good approximation, we can calculate inertial power (see Appendix,
Eqn A7j) and inertial torque (see Appendix, Eqn A8l) using
harmonic functions. In addition, similar methods can be used to
estimate the induced and profile drag components, which together
comprise the majority of the drag. We divide the wingbeat into two
halves, so that we can approximate the vertical aerodynamic force
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using the following piecewise function:

FðtÞ ¼
4ð1� xÞW sin2ð2pftÞ 0 � t � 1

2f

4xW sin2ð2pftÞ 1

2f
� t � 1

f

8>><
>>: ; ðA9aÞ

FðtÞ ¼ 4W sin2ð2pftÞ
ð1� xÞ 0 � t � 1

2f

x
1

2f
� t � 1

f

8>><
>>: ; ðA9bÞ

where χ is the fraction of weight support generated during the
upstroke andW is the bird’s weight. The induced power can then be
estimated by:

Pinduced both wingsðtÞ ¼ ks

ffiffiffiffiffiffiffiffi
1

2rA

s
ðj4W sin2ð2pftÞjÞ1:5

�
ð1� xÞ 1:5 0 � t � 1

2f

x3=2
1

2f
� t � 1

f

8>><
>>: ; ðA9cÞ

Pinduced both wingsðtÞ ¼

ks

ffiffiffiffiffiffiffiffiffiffiffiffi
32W 3

rA

s
jsin3ð2pftÞj

ð1� xÞ 1:5 0 � t � 1

2f

x1:5
1

2f
� t � 1

f

8>><
>>: ; ðA9dÞ

where the absolute value is needed to ensure the induced power is
positive as the induced flow is always downwards through the
actuator disk. The induced torque for a single wing can then be
estimated by:

Qinduced single wingðtÞ ¼ 1

2
� Pinduced both wingsðtÞ

ð_~uðtÞ � ẑÞ
; ðA9eÞ

Qinduced single wingðtÞ ¼

1

2
�
ks

ffiffiffiffiffiffiffiffiffiffiffiffi
32W 3

rA

s
jsin3ð2pftÞj

2Fpf sinð2pftÞ
ð1� xÞ 1:5 0 � t � 1

2f

x1:5
1

2f
� t � 1

f

8>><
>>: ;

ðA9f Þ

Qinduced single wingðtÞ ¼

ks

ffiffiffiffiffiffiffiffiffi
2W 3

rA

s
sin2ð2pftÞ

Fpf

ð1� xÞ 1:5 0 � t � 1

2f

�x1:5
1

2f
� t � 1

f

8>><
>>: ; ðA9gÞ

where the negative half of the sine function can be incorporated into
the piecewise function so the absolute value can be removed. The
other significant aerodynamic contribution is from profile drag for a
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Fig. A2. Our simplified harmonic wingbeat model matches the corroborated high-fidelity aeromechanic model well. (A) The piecewise harmonic force
model (thick line; see Appendix, Eqn A9b) matches the aerodynamic force trace from a hummingbird (thin line), including 28% upstroke weight support. The
harmonic stroke model matches the 3D tracked kinematic traces of stroke angle (B), velocity (C) and acceleration (D). (E) Harmonic model of aerodynamic
and inertial torque (thick lines) approximate the high-fidelity blade element model (BEM) trace (thin lines), showing that inertia dominates and explaining why
hummingbirds (F) need to generate maximum torque at stroke reversal. (G) A harmonic model of aerodynamic and inertial power (thick lines) also approximates
the detailed BEM (thin lines) well, showing that the aerodynamic power does not cancel out the inertial power at the end of each half-stroke (H).
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sinusoidal stroke:

Pprofile both wingsðtÞ ¼ 2 � 1
2
rSCDjðr̂3R _fðtÞÞ3j

¼ 2 � 1
2
rSCDðr̂3RÞ3ð2Fpf Þ3jsin3ð2pftÞj;

ðA9hÞ
Pprofile both wingsðtÞ ¼ 8rSCDðr̂3RÞ3F3p3f 3jsin3ð2pftÞj: ðA9iÞ
To account for differing angles of attack and wing shapes during

the downstroke and upstroke, we can make a piecewise function
with a drag coefficient for the downstroke, CD,down, and upstroke,
CD,up. The absolute value sign can be incorporated into the
piecewise factor to ensure the profile power is always positive (drag
always opposes velocity):

Pprofile both wingsðtÞ ¼ 8rSðr̂3RÞ3F3p3f 3 sin3ð2pftÞ

�
CD;down 0 � t � 1

2f

�CD;up
1

2f
� t � 1

f

8>><
>>: : ðA9jÞ

The profile torque is estimated by crossing the profile drag force
with the distance out that the force acts on the wing, r̂3R. Because
the velocity of the wing changes direction during the upstroke, the
negative factor can be once again placed in the piecewise function:

Qprofile single wingðtÞ ¼ 2rSðr̂3RÞ3F2p2f 2 sin2ð2pftÞ

�
CD;down 0 � t � 1

2f

�CD;up
1

2f
� t � 1

f

8>><
>>: : ðA9kÞ

Combining this with the inertial power and torque estimates, one
can compare the inertial and aerodynamic torque and power
requirements with simple parameters. Similar to the piecewise
breakdown of the aerodynamic force, the inertial power and torque
can be separated into two halves with differing moments of inertia,
I, representing a fully extended downstroke and upstroke. This can
be extended for generalist birds, which fold their wing on the
upstroke, using an inertia reduction factor of n:

Pinertial both wingsðtÞ ¼ 8F2p3f 3 sin ð4pftÞ

�
I 0 � t � 1

2f

nI
1

2f
� t � 1

f

8>><
>>: ; ðA9lÞ

Qinertial single wingðtÞ ¼ 4Fp2f 2 cos ð2pftÞ

�
I 0 � t � 1

2f

nI
1

2f
� t � 1

f

8>><
>>: : ðA9mÞ

Finally, we can compare these piecewise harmonic models with
the detailed blade element models, which shows the aerodynamic
and inertial variables are remarkably well approximated (Fig. A2).
We thus conclude that the hummingbird wingbeat can be modeled
analytically within reasonable approximation. We used the
following values averaged over six Anna’s hummingbirds:
bodyweight W=0.048 N, body mass m=4.89 g, upstroke force
fraction χ=0.28, wingbeat frequency f=41 Hz, spatial cost factor

κσ=1.1, density of air ρ=1.2 kgm
−3, swept area A=0.0072m2, stroke

amplitude Φ=1.29 radians, wing surface area S=0.000565 m2, third
moment of area r̂3 ¼ 0:56, wing radius R=0.0514 m, downstroke
drag coefficient CD,down=0.162, upstroke drag coefficient
CD,up=0.162, wing inertia I=2.23×10−8 kg m2, upstroke reduction
factor n=1.

A10: maximum power estimates under load-lifting trials
We derive power scaling laws based on our harmonic models from
above (see Appendix, section A9). By integrating maximum load-
lifting kinematics of Anna’s hummingbirds in the literature, we can
calculate how the profile, induced and inertial power scale, thus
requiring higher burst muscle performance. Segre et al. (2015) show
that a 4.64 g Anna’s hummingbird (average) can lift 5.93 g of
additional mass (average). Altshuler et al. (2010b) showed that
Anna’s hummingbirds increase their wingbeat frequency from
around 40 to 50 Hz and their wingbeat sweep angle (twice the
amplitude) from around 147 to 173 deg during load-lifting trials.
Denoting the normal hovering values with the subscript ‘h’ and the
maximum load-lifting values with the subscript ‘m’, we can
calculate the power margins based on Appendix, section A9. Profile
power scales withΦ3 and f3, so the profile power margin,Mprofile, is:

Mprofile ¼ Fm

Fh

� �3 fm
fh

� �3

: ðA10aÞ

Induced power scales with W1.5 and Φ−0.5, so the induced power
margin, Minduced, is:

Minduced ¼ Wm

Wh

� �1:5
Fm

Fh

� ��0:5

: ðA10bÞ

Inertial power scales with Φ2 and f 3, so the inertial power margin,
Minertial, is:

Minertial ¼ Fm

Fh

� �2 fm
fh

� �3

: ðA10cÞ

Using these equations and the Anna’s hummingbird values from the
literature, we estimate that the profile, induced and inertial power
increase by 3.2, 3.2 and 2.7 times, respectively, during maximum
load lifting (which we round to a factor of 3 increase in muscle
power for burst performance).
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Figure S1 | Vertical actuator disk area calculation. A, The 3D positions of Bird 2’s right wing 

outline over one full stroke are shown in red. These points are projected onto the horizontal plane (light 

red) so that the swept area could be calculated. B, The area enclosed by the projected points (black 

perimeter) was calculated using an alpha hull (custom MATLAB script). The normal vector of this 

projected actuator disk area pointed in the same direction as the measured vertical force. 
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Figure S2 | Translational lift and drag polar used to determine profile drag coefficient. A, The 

translational lift, CL, and drag, CD, force coefficients for each angle of attack were adapted from 

previously published wing spinner measurements on prepared Calypte anna wings (Kruyt, et al., 

2014). B, The profile drag coefficient, CD,prof, was calculated by subtracting the induced drag, 

calculated based on the measured lift in (A), from CD for every angle of attack (Eqn A3). 

 

 

 
 

 
Figure S3 | Peak force in Anna’s pectoralis is achieved in less than 8 ms after stimulus. A, 

Isometric tension traces from the pectoralis of Anna’s hummingbirds due to a single stimulus (adapted 

from Fig. 2 of Haigiwara et al. (Hagiwara, et al., 1968)). Letters and numbers after description 

correspond to the subpanel in the original figure. Simultaneous traces of isometric tension (red) and 

repeated stimuli (blue) at 22.7 Hz (B), 52.5 Hz (C), and 82.1 Hz (D) show that the peak force is 

reached in 7.1, 7.3 and 5.9 ms respectively. Traces adapted from Fig. 3 A-C of Haigiwara et al. 

(Hagiwara, et al., 1968). 
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Table S1 | Mass, morphology parameters and wingbeat statistics for all six birds (mean ± s.d.). 

 

	

 Bird # 1 Bird # 2 Bird # 3 Bird # 4 Bird # 5 Bird # 6  Total 

 
n = 5 flights n = 5 flights n = 4 flights n = 4 flights n = 5 flights n = 5 flights N = 6  

individuals 

Mass (g) 5.4 ± 0.2 5.1 ± 0.1 4.7 ± 0.1 5.0 ± 0.1 4.7 ± 0.1 4.4 ± 0.1 4.9 ± 0.4 

 n = 5 
wingbeats 

n = 5 
wingbeats 

n = 5 
wingbeats 

n = 5 
wingbeats 

n = 5 
wingbeats 

n = 5 
wingbeats 

N = 6  
individuals 

Wing radius 
(mm) 

51.4 ± 0.3  47.5 ± 0.3 52.2 ± 0.2 52.0 ± 0.3 50.5 ± 0.4 54.7 ± 0.1 51.4 ± 2.4 

Single-wing 
area (mm2) 

568 ± 45 527 ± 8 561 ± 27 587 ± 22 530 ± 42 615 ± 35 565 ± 34 

Average chord 
length (mm) 

12.3 ± 0.8 12.6 ± 0.2 11.7 ± 0.5 11.9 ± 0.1 11.5 ± 0.8 12.0 ± 0.6 12.0 ± 0.4 

Aspect ratio 4.2 ± 0.3 3.8 ± 0.1 4.5 ± 0.2 4.4 ± 0.1 4.4 ± 0.3 4.6 ± 0.2 4.3 ± 0.3 

r ̂2 0.53 ± 0.01 0.54 ± 0.01 0.51 ± 0.01 0.50 ± 0.01 0.52 ± 0.01 0.50 ± 0.01 0.52 ± 0.02 

r ̂3 0.57 ± 0.01 0.58 ± 0.01 0.56 ± 0.01 0.55 ± 0.01 0.56 ± 0.01 0.55 ± 0.01 0.56 ± 0.01 

 n = 568 
wingbeats 

n = 743 
wingbeats 

n = 644 
wingbeats 

n = 585 
wingbeats 

n = 789 
wingbeats 

n = 765 
wingbeats 

N = 6  
individuals 

Flapping 
frequency (Hz) 

39 ± 1 40 ± 1 42 ± 1 43 ± 1 41 ± 1 40 ± 1 41 ± 2 

Downstroke 
time (%) 

46 ± 1 46 ± 1 46 ± 1 47 ± 1 48 ± 1 46 ± 1 47 ± 1 

Weight support 
(%) 

97 ± 6 95 ± 5 100 ± 5 98 ± 5 100 ± 7 104 ± 5 99 ± 3 

Upstroke weight 
support (%) 

28 ± 1 28 ± 2 29 ± 2 28 ± 2 27 ± 2 27 ± 2 28 ± 1 
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Movie 1 | Wingbeat-resolved in vivo aerodynamic weight support of a hummingbird. The 

high-speed video shows an Anna’s hummingbird hovering in the setup. The simultaneously 

recorded vertical aerodynamic force is shown with a green vertical arrow, bodyweight is 

indicated with a black vertical arrow. 
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http://movie.biologists.com/video/10.1242/jeb.178228/video-1


Movie 2 | Automatic wingbeat transition detection from high-speed video. A demonstration 

of how the wingbeat transitions were automatically obtained. A white dot tracks the area centroid 

of the bird outline. The wingbeat transition is defined as the moment when the area centroid 

changes horizontal direction (red being downstroke and blue upstroke).  
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http://movie.biologists.com/video/10.1242/jeb.178228/video-2


Movie 3 | In vivo weight support recording of a hummingbird flying freely into setup. An 

unidentified Anna’s hummingbird freely flies into and hovers in a rugged outdoor version of the 

setup, attracted by a feeder, we simultaneously recorded the vertical aerodynamic force shown 

with a green vertical arrow. 
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