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Abstract: It is challenging to calibrate multiple camera-projector pairs for multi-view 3D surface
reconstruction based on structured light. Here, we present a new automated calibration method for
high-speed multi-camera-projector systems. The method uses printed and projected dot patterns
on a planar calibration target, which is moved by hand in the calibration volume. Calibration
is enabled by automated image processing and bundle-adjusted parameter optimization. We
determined the performance of our method by 3D reconstructing a sphere. The accuracy is
-0.03 ± 0.09 % as a percentage of the diameter of the calibration volume. Applications include
quality control, autonomous systems, engineering measurements, and motion capture, such as
the preliminary 3D reconstruction of a bird in flight we present here.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Structured light systems are widely used to generate 3D reconstructions of objects because they
are accurate, non-contact, efficient, and can reconstruct the surface geometry at high temporal and
spatial resolution. These systems use a camera to record light patterns generated by a projector
that are reflected by the surface of a 3D object. Depending on the type of light pattern used, even
rapidly deforming objects can be 3D reconstructed. Temporally encoded light patterns, such as
binary coding [1, 2] and phase-shifted coding [3, 4], limit 3D reconstruction to motionless or
slowly moving objects, because they require comparison of consecutive frames. Spatially encoded
light patterns on the other hand, are robust to inter-frame movement because each frame can be 3D
reconstructed individually [5]. Some structured light systems use grayscale patterns which cannot
be projected at high frame rates [6–9], while other systems are limited by using low-speed (< 100
Hz) projectors [10, 11]. However, by using a high-speed camera-projector system and a 1-bit
light pattern, such as psuedo-random dots [12, 13] or psuedo-random intersecting lines [14], 3D
reconstructions of deforming geometries can be achieved at any frame rate with sufficient lighting.
Regardless of which projection pattern is used, computation of the 3D surface geometry is based
on triangulation algorithms that rely on image processing and camera-projector calibration.

The calibration of cameras is a well-studied problem, which involves calibrating the intrinsic
camera parameters that define the imaging sensor geometry, called intrinsic parameters. If there
are multiple cameras, this also includes calibrating the relative position and orientation between
cameras, called extrinsic parameters. Early calibration methods used precisely manufactured 3D
targets with pre-determined marker locations [15, 16]. Recently, simpler targets have become
preferred, because they can more easily be adapted and deployed in different calibration volumes.
A common method used in commercial motion capture systems relies on a wand as a calibration
target, which consists of two or more reflective spheres at pre-determined distances [17]. Another
popular calibration target in vision studies is a 2D planar surface with a checkerboard pattern
of pre-determined dimensions [18, 19]. Both of these calibration targets are manually moved
through the imaging volume in different orientations. The most commonly applied model for the
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camera’s intrinsic parameters is the pinhole model [20]. This simple model can be improved
using parameters that compensate for camera distortion [21]. Other models such as polynomial
fitting are also used [22, 23].

Although a projector can usually be modeled simply as the inverse of a camera, the calibration
of projectors is more cumbersome. The calibration must be completed with the help of cameras,
because a projector cannot observe the calibration target. Therefore, information about how light
rays are projected is found by projecting light rays onto a light reflecting surface, which is then
captured by a camera. Several approaches for camera-projector calibration rely on self-calibration
where the calibration is adjusted concurrently with 3D reconstruction [24–30]. Because of this,
self-calibration is operational for only a couple reconstruction methods. However, calibrating
before reconstruction is usually preferred because it is more stable and accurate in most cases [31],
and it also works for any reconstruction method including high-speed applications.
There exist three primary approaches to calibrate a structured light system: the camera and

projector are calibrated during consecutive separate steps, they are calibrated simultaneously, or
some combination of both calibration approaches is used. Each approach typically relies on a
planar calibration target that is moved through the calibration volume. The calibration target
requires a pre-determined pattern on it for each device: a printed pattern of pre-determined
dimensions for the camera calibration and a projected pattern captured by the camera for the
projector calibration. The patterns are designed carefully so that they can be easily separated
from each other and so that keypoints (a visual landmark) on them can be easily identified.
The keypoints are used to optimize the calibration model by minimizing reprojection error.
Reprojection error is the difference between the locations of the keypoints that are predicted by
the calibration model and the locations identified in the camera image.

The most common approach for calibrating a structured light system uses separate steps: first
the camera is calibrated, then the projector. The camera is calibrated using the printed pattern,
after which the now-calibrated camera is used to calibrate the projector. The projector calibration
step requires projecting a pre-determined pattern on the calibration target in multiple positions,
which differ from the positions used to calibrate the camera [32–37]. Whereas this temporal
separation eliminates image processing issues that could be caused by spatially overlapping
patterns, the separate calibration steps can cause errors to propagate.
Another approach for calibrating a structured light system uses a combination of multiple

calibration approaches: calibration of the two devices in separate steps, and calibration of the
two devices simultaneously. These approaches use a robot or apparatus to repeatably move a
calibration target to multiple, pre-determined positions. The same positions are used for both
the camera calibration (printed pattern) and the projector calibration (projected pattern), but a
different calibration target is used so that the patterns do not overlap [31, 38]. In this manner,
the patterns are still temporally separated, but approximately share the same spatial location for
increased accuracy, by mathematically optimizing the calibration simultaneously. One downside
of this method is that it requires an expensive mechanism to move the calibration target. This
mechanism needs to be adapted to different calibration volumes (e.g. small versus large), and
new errors are introduced with the magnitude depending on the repeatability and precision of the
mechanism.

Finally, amore integrated approach for calibrating a structured light system calibrates the camera
and projector simultaneously. This strategy prevents excess errors from separate calibration steps.
In this case, the multiple positions of the calibration target are simultaneously used for both the
camera and projector calibration. To identify each of the spatially overlapping patterns, both
printed and projected, the camera image needs to be filtered. Filtering is simplified by carefully
designing each pattern so that it can isolated with image processing steps [39, 40].

Currently, volumetric 3D surface reconstructions of objects are usually accomplished using a
rotation table to give structured light systems a 360 degree view [41–43]. However, for (rapidly)
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deforming objects, multiple view angles are required simultaneously. For multiple cameras, such
calibration techniques exist [17,44–46], but 3D reconstruction solely using cameras is not precise
for uniform surfaces. For multiple cameras and projectors, robust calibration methods remain
to be developed. An existing method relies on self-calibration using fringe projection [25], but
self-calibration is less stable and accurate as discussed above, and the reconstruction method used
does not work at high-speeds. Another approach to calibrating a multi-camera-projector system is
to calibrate each camera-projector pair first, then calibrate all cameras separately [47]. Established
methods exist for both steps. However, these sequential steps cause errors to propagate, and the
additional calibration steps are cumbersome.

To automatically and accurately calibrate multi-camera-projector structured light systems for
volumetric high-speed 3D surface reconstruction, we developed a new method. This method
is based on an integrated calibration target, image acquisition procedure, and algorithmic
solution. Automation is achieved with sparse dot calibration patterns and corresponding image
processing techniques. High accuracy is achieved by calibrating all camera and projector devices
simultaneously using established calibration models. This new technique can then be combined
with the single-shot monochrome 3D reconstruction method we recently developed [14]. Used
together, we demonstrate the technique by reconstructing the volumetric 3D surface of a sphere and
freely flying bird at 3200 Hz. We have thus established high-speed volumetric 3D reconstruction
for rapidly deforming objects.

2. Materials and methods

2.1. High-speed multi-view structured light system

To create a high-speed multi-view structured light system to 3D reconstruct deforming volumes,
we set up four camera-projector pairs to image an object from four view angles [Fig. 1]. The
four high-speed cameras (Phantom Miro M310; Vision Research, Wayne, NJ, USA) and four
high-speed projectors (DLP® LightCrafter™ E4500MKII™; EKB Technologies, Bat-Yam, Israel)
were synchronized temporally using an external trigger box (9600+ Series Digital Delay Pulse
Generator; Quantum Composers, Inc., Bozeman, MT, USA). The calibration pipeline computed
the calibration parameters based on imaging at 1000 Hz. Subsequently, these calibration
parameters were used to make frame-by-frame 3D reconstructions based on 3200 Hz imaging of
stationary sphere and a flying bird. The frame rate was reduced during calibration to enable the
projectors to switch colors as well as patterns. A sphere (3-1/4 Gray PVC Ball; Precision Plastic
Ball Co., Franklin Park, IL, USA) of known size (diameter 82.55 ± 0.13 mm) and a flying bird
were 3D reconstructed to demonstrate the structured light system. The bird was a 4-year-old
female near-white Pacific parrotlet [Forpus coelestis (Lesson 1847), 27-29 g, 0.23 m wingspan],
which was trained using positive reinforcement to fly between perches 0.5 m apart. All birds
received food and water ad libitum, their cages were enriched, and all training and experimental
procedures were approved by Stanford’s Administrative Panel on Laboratory Animal Care.
The four cameras were placed approximately 0.8 m away from the center of the calibration

volume while the four projectors were placed approximately 0.5 m away. To reduce cross-talk
between the four camera-projector pairs, every camera-projector pair used a specific projector
center wavelength (either blue: 455 nm, green: 530 nm, or red: 625 nm) in combination with a
custom light filter for the camera (72.0 mm diameter custom filters; blue: low-pass filter with
475 nm cutoff, green: band-pass filter centered around 540 nm with 80 nm full width at half
maximum, red: high-pass filter with 600 nm cutoff; Andover Corporation, Salem, NH, USA).
The three RGB wavelengths were selected based on the power specifications of our off-the-shelf
high-speed projectors to maximize projected light intensity. Because we defined three color
channels for four camera-projector pairs, we temporally separated the two pairs that relied on the
same color. We did this by alternating the reconstruction frames, sacrificing their reconstruction
speed by a factor of two. Further work would be required to develop algorithms that remove
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Fig. 1. The multi-view structured light system. a) Schematic showing the configuration of four camera
and projector pairs. To reduce cross-talk between the four projected patterns, we use three different colors
matched by camera color filters for pairs 1-3. The color of the 4th pair is duplicated from the 2nd pair, and
the signals are separated temporally by alternating reconstruction frames. The other signals are temporally
synchronized frame-by-frame. The calibration volume is indicated by the dashed contour, while the 2D
calibration target that is moved through the volume is indicated by the rectangle with dots on it. b) Actual
setup with the four pairs of high-speed cameras and projectors that we used to reconstruct the flying bird
from four camera view angles. The calibration volume and target are shown as in (a). The setup used to
reconstruct the sphere and in the majority of the calibration accuracy results had similar spacing and the
same camera-projector configuration.

crosstalk without trading in image speed. Future systems could also take advantage of other light
source and filter combinations to increase the number of camera-projector pairs.

2.2. Automated technique for calibrating multiple cameras and projectors

To enable 3D surface reconstruction with multi-view structured light systems, the intrinsic and
extrinsic parameters of the cameras and projectors need to be calibrated. To calibrate the system
in a simple automated manner, we designed a 2D calibration target that can be easily adapted for
different calibration volumes. Unlike most calibration targets, this calibration target is two-sided
so that every camera and projector can simultaneously image it or project onto it respectively. All
camera and projector parameters are calibrated simultaneously by the user moving the calibration
target through the volume, and by switching between the pattern printed on the target (for camera
calibration) and the pattern projected onto the target (for both camera and projector calibration) at
high-speed. Afterwards, we apply a linear correction for the small displacement of the calibration
target between frames. As a result, each spatial position of the calibration target throughout the
calibration procedure is approximately identical between every camera and projector, while each
pattern is separated temporally. Because we image the calibration patterns simultaneously on
both the front and back side of the calibration target, and the two sides are related by a rigid
transformation, the relative positions of both printed and projected pattern dots captured by all
cameras can be compared. This enables accurate extrinsic parameter computation between all
devices.

The calibration target was made by printing two unique gray pseudo random dot patterns onto
white sticker paper, which were adhered to either side of a flat aluminum plate. For camera
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Fig. 2. Multiple-view structured light calibration technique. a) An aluminum plate covered on both sides
with printed dots is moved around the calibration volume by the user (two calibration target positions
recorded by a single camera are shown). The gray, pseudo-random dots are printed on two paper stickers
which are adhered to each side of the calibration target, while black tape covers the edges of the target. The
printed dots for camera calibration are recorded by each high-speed camera when its paired projector is
fully on (each pixel is illuminated). The images are 12-bit and thus have much better contrast than can be
conveyed in print. b) The same two calibration target positions are shown as in (a), but now pseudo-random
dots are projected onto the target and recorded by the high-speed camera for projector calibration. c) A
sequence of 6 frames is projected and recorded at 1000 Hz every 0.5 seconds for our specific implementation.
Each projector projects four different frames imaged by different cameras. First, a projector projects uniform
light (a fully on frame) in the color of the associated camera filter to make the gray dots on the calibration
target visible to the paired camera. Second, a pseudo-random dot pattern is projected in all three colors so
they can be seen by the other cameras to determine the connectivity of the multi-view system.

Table 1. Calibration pattern descriptions. Each calibration pattern consists of uniform
dots spread in a pseudo-random pattern with locations determined by a custom Matlab
code. The printed dots are used for camera calibration while the projected dots are used
for both camera and projector calibration. There are two separate printed dot patterns,
one for each side of the calibration target.

Printed side 1 Printed side 2 Projected

Dot diameter 3.61 mm 3.61 mm 15 pixels

Dot min. spacing 4.57 mm 4.57 mm 20 pixels

Number of dots 334 323 308

Pattern width 190.5 mm 190.5 mm 912 pixels

Pattern height 254.0 mm 254.0 mm 1140 pixels

calibration, the printed calibration dots on the target are made visible by projecting uniform
light with the projectors [Fig. 2(a)]. The projectors are calibrated by imaging a pseudo random
dot pattern projected on the calibration target [Fig. 2(b)]. The printed and projected dots may
overlap, and in order to simplify the image processing steps needed to separate the patterns, we
carefully designed the dot patterns. The printed dots are gray rather than black, and both patterns
are somewhat sparse with specifications in Table 1. Further, the local uniqueness of the dot
pattern enables us to use pattern recognition when only parts of the dot pattern are captured by
the camera, such as when the hand of the user blocks the view. For single camera calibration, a
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locally unique pattern is not required. However, for multiple cameras or any number of projectors,
a locally unique pattern is needed to match corresponding dots that are projected or captured
by different devices. Finally, we used black tape to cover the edges of the plate to eliminate
reflections. Combined, these solutions enable us to automatically identify and associate the
printed and projected dots on both sides of the calibration target as imaged from multiple views.
To increase accuracy and reduce the total processing time, we designed a specific order for

illuminating the calibration target for multi-view camera and projector calibration [Fig. 2(c)].
First, we image the printed pattern for each camera. This is done by projecting uniform light
on the calibration target at the specific wavelength of the filter attached to the projector’s paired
camera [Figs. 2(a) and 2(c)]. Next, we increase the accuracy of the calibration by maximizing the
number of interconnections between cameras and projectors. This is accomplished by directing
every projector to sequentially project the calibration pattern in each wavelength [Figs. 2(b) and
2(c)], so that it can be imaged by every camera to the degree that they are observable. Because the
calibration target moves slightly in between frames, we condense the sequence to as few frames
as possible by projecting in different wavelengths simultaneously. For applications in which the
calibration target is close to motionless in between frames, image processing can be simplified
by projecting an inverse dot pattern as well. However, to make the calibration procedure more
simple to implement, we decided to move the calibration target by hand. Consequently, we need
to correct for small movements between frames mathematically in Section 2.6. In order to reduce
the total processing time of the resulting 6 frame sequences, we only recorded this sequence
every 0.5 seconds. This allows the calibration target to move substantially between sequences.
Whereas our example implementation is based on combining four cameras and four projectors,
our calibration strategy can be generalized and applied to larger systems in a straightforward
manner.

2.3. Image processing algorithm for dot detection

Once the printed and projected dot patterns are recorded by all of the cameras, the dots in each
frame are automatically detected using image processing. Regardless of whether the dots are
printed or projected, the same image processing procedure is used. All data processing was
conducted in MATLAB R2017b (MathWorks, Inc., Natick, MA, USA).

To begin, all possible dot locations are identified based on the grayscale contrast in the original
image captured by the camera [Figs. 3(a) and 3(e)]. The contrast in the original image is first
normalized against the 99th percentile of its intensity so that all images have a similar grayscale
distribution. The 99th percentile is used so that any stray light from incorrect projectors does not
skew results. A custom code is then used to binarize the image, converting it from grayscale
to black and white. The custom code takes the locally adaptive threshold of the image [48]
[background of Figs. 3(b) and 3(f)] in 50 × 50 pixel segments with 50 % overlap. We set the
minimum variance threshold of the pixel segments to 1e-8 (each pixel intensity ranges from
0-1) to identify all potential dots, even in regions with low lighting contrast. Because of this,
excess blobs are identified in regions of low contrast and finite camera noise [e.g. Fig. 3(f)],
but subsequent image filtering processes filter out these excess blobs. Regions of grouped black
pixels, or blobs, are identified as possible printed or projected dots. If a global threshold is used
instead, details of entire portions of the image might be eliminated. This happens when image
brightness varies across the entire image, which is typical for most experimental settings.

Once the set of all possible dot locations is identified, filtering techniques are used to identify
the blobs that are most likely printed or projected dots. For each blob, four parameter descriptors
are computed and normalized around a mean of zero and a standard deviation of one: blob area,
ellipticity, x position, and y position. The Alpha Shapes algorithm [49] is first used to eliminate
clear outlier blobs after which k-means clustering [50] is used to separate regions of blobs within
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Fig. 3. Image processing steps to detect dots. a-d) Identification of the printed dots captured by the
high-speed camera. e-h) Identification of the projected dots captured by the high-speed camera. a,e) Original
image as captured by the camera. The images captured by the cameras are 12-bit and thus have much better
contrast than can be conveyed in print. b,f) Black and white image after local adaptive thresholding, which
we designed to detect dots even in low contrast lighting conditions leading to excess dot detection in low
contrast regions with finite camera noise. Black regions of pixels are denoted as blobs and recorded as
possible locations of printed or projected dots. Red points (·) are blobs eliminated by K-means clustering
based on the following blob parameters: number of similar blobs, area, ellipticity, x position, and y position.
Red crosses (X) indicate elliptical blobs that have been eliminated in a second round of filtering in which
they were identified as ellipses that are substantially dissimilar from the rest. Blue circles (O) are the final
set of detected dots. c,g) A subpixel edge detector is used to identify the edges of elliptical blobs (blue
points). We then eliminate outlier edges due to overlapping printed and projected dots (labeled in red in
g) using the RANSAC algorithm applied to an elliptic fit. The fitted ellipses are used to compute and
display the center, major and minor axis, and orientation of each elliptical blob. d,h) Finally, we apply skew
correction to the image (c,g) based on the median orientation and major to minor axis ratio of the detected
elliptical dots. This correction transforms the ellipses back into circles and ensures that the spacing between
circles is proportional to the spacing between printed or projected dots.

the 4-dimensional parameter space. Next each region of blobs is rated using Eq. (1)

Sb = nb

(
Eb

)−2 (
Ab

)
, (1)

where for region of blobs b, Sb is the score, nb is the number of blobs, Eb is the mean ellipse fit
error, and Ab is the mean area of all the blobs in that region. A higher score indicates a higher
likelihood that the region of interest contains blobs corresponding to the printed or projected
dots. K-means clustering is run 10 distinct times to cluster the blobs into regions. This starts
with a single region on the first distinct run, and ends with 10 regions. The best region score
over the 10 distinct runs is chosen. The parameter boundaries defining the best region are then
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expanded slightly for each of the four parameters (area, ellipticity, x position, and y position) in
case the clustering was too limiting. The blobs rejected by these steps are shown as red points (·)
in Figs. 3(b) and 3(f) and the remaining set of blobs we will now call elliptical blobs.
Once a set of elliptical blobs has been identified as possible printed or projected dots, the

subpixel edges of each elliptical blob are detected in order to compute its subpixel center. To
enable effective subpixel edge detection, image contrast is equalized by using two linear fits
of the image intensity. One fit equalizes the background brightness in the region of elliptical
blobs while the other fit equalizes the brightness of the elliptical blobs themselves. We compute
linear polynomial image-intensity surfaces fitted to the average brightness levels surrounding
each elliptical blob and internal to each elliptical blob, using the RANSAC algorithm to remove
outliers [51]. The more uniform contrast enables the edge detector [52] to robustly find the edges
of the elliptical blobs with subpixel accuracy [Figs. 3(c) and 3(g)]. To eliminate outliers in
the identified edges, in particular due to overlapping printed and projected dots, we apply the
RANSAC algorithm to an elliptical fit of the detected edges. From this elliptical fit we find the
center, major and minor axis, and orientation of each elliptical blob [Figs. 3(c) and 3(g)].
As a final filtering step, most elliptical blobs that do not lie on the calibration target are

eliminated. This is done by using the Alpha Shapes algorithm to eliminate elliptical blobs
dissimilar from the rest. Elliptical blobs are grouped based on how similar they are to each other
by comparing the major axis, minor axis, and orientation angle. This grouping is used because
all dots projected onto the same planar surface, like the calibration target, will share similar sizes
and orientations. In contrast, dots projected onto a non-planar surface, such as the user’s hand,
will have varied sizes and orientations. In this way, elliptical blobs on the calibration target are
mostly retained while many of the elliptical blobs that were projected onto other surfaces are
eliminated. The elliptical blobs eliminated by this final filter are labeled with red crosses (X),
while the remaining detected dots are labeled with blue circles (O) in Figs. 3(b) and 3(f).

2.4. Algorithm for matching detected dots with pre-determined printed and projected
dots

After generating a list of the centers of detected dots [Figs. 3(b) and 3(f) and Fig. 4(a)], these
dots need to be matched to the pre-determined printed dots or pre-determined projected dots
[Fig. 4(b)]. Both matching procedures are the same, although the printed dots have two distinct
pre-determined patterns, one for each side of the calibration target, so only one pattern should
match. Before we can match detected dots with pre-determined dots, the pose of the elliptical
detected dots needs to be corrected. This removes dot pattern skew, due to camera perspective
and calibration target orientation. Skew can be corrected by rotating the positions of the dots by
the median orientation angle, and then scaling the positions in the x and y axis by the median
major and minor axis. These newly calculated positions approximate the original pattern [Figs.
3(d) and 3(h) and Fig. 4(a)].

In order to locally match the detected dot pattern to pre-determined printed or projected dots,
each detected and pre-determined dot and its immediate surroundings is normalized [Figs. 4(c)
and 4(d)]. The individual dot that has to be matched is placed at position (0,0), its nearest
neighbor is placed at (1,0), and the position of its other nearest neighbor dots scale based on
these two positions. For the detected dots, the seven closest dots are normalized in this fashion,
and for the pre-determined printed or projected dots, the five closest pre-determined dots are
normalized. By chance, it can happen that there are multiple nearest neighbors to be placed at
(1,0), so we perform an equivalent normalization for those specific neighbors.

The next step of the matching algorithm is based on error minimization of the small groups of
normalized detected dots compared with the small groups of normalized pre-determined printed
or projected dots. When matching the small groups of normalized dots, points (0,0) and (1,0)
will always match by design. The goodness of local pattern overlap is therefore determined by
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Fig. 4. Automated matching of detected dots identified using image processing (blue) with pre-determined
projected or printed dots (green). a) Detected dots overlaid on a skew-corrected image captured by the
high-speed camera. The skewed pose of the elliptical detected dots has been corrected so that the spacing
matches the original spacing when the dots were circles. b) Pre-determined printed dots. c) Detected
dots are matched with pre-determined printed dots using the same procedure as they are matched with
pre-determined projected dots. A sample detected dot is selected along with its seven nearest neighbor dots.
The dot is connected to its nearest neighbor with a dashed black line. d) All eight dots from (c) are then
normalized according to the transformations needed to move the dot at the center to (0,0) and its nearest
neighbor to (1,0). The same is done for a random pre-determined printed dot and its five nearest neighbor
dots. In this case, the overlay of the two sets of dots shows a bad match, because the red lines that connect
pairs of closest overlapping dots are long. This indicates high error for this particular match between two
sets of dots. e) The best match of the set of dots in (c) with a subset of the dots from (b) occurs when
the red error lines are barely visible. The matched dots in (e) are used to iteratively propagate matches
across the list of all detected dots identified using image processing. f,g) The outcome of the propagated
matching process is that the pre-determined dot positions (green) can be overlaid on top of the detected dot
positions (blue) for both the printed dots (f) and projected dots (g). For visualization purposes, the green
dots displayed here are shown to the full extent of the printed or projected area, even if a matching dot was
not detected with image processing.
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the four next-closest paired detected and pre-determined dots for a total overlap of six paired dots.
The error for each pair of dots (detected vs. pre-determined) is visualized as red lines shown in
Fig. 4(d). The total matching error equals the sum of squares of paired line distances.
After minimization, iterative planar homography mapping is used to match all detected dots

with pre-determined dots. The six matching dots with the lowest error [Fig. 4(e)] are used
to compute a planar homography H, between detected dots P and pre-determined printed or
projected dots P̃. H is found by minimizing Eq. (2)

min
H

P −H · P̃


2, (2)

where H is a 3 × 3 matrix, P̃ and P are 3 × n 2D homogeneous coordinates, and n is the number
of dots. The double vertical bars indicate the use of a Euclidean norm. As Eq. (3) shows

KX =


a1 a2 · · · an

b1 b2 · · · bn

c1 c2 · · · cn


=


a1/c1 a2/c2 · · · an/cn

b1/c1 b2/c2 · · · bn/cn

1 1 · · · 1





c1

c2
. . .

cn


= Pλ,

(3)
the homogeneous coordinate constraint requires that the first and second rows are normalized by
the third row so that the entire third row equals one. Any subsequent equations follow the same
notation where X indicates 3D coordinates and P indicates 2D homogeneous pixel coordinates
normalized by a corresponding n × n diagonal matrix labeled λ. The intrinsic calibration matrix,
K, is used to convert between 3D coordinates and 2D pixel coordinates. In general, the value of
λ is not used beyond fulfilling the homogenous constraint. Matching dots are iteratively added
to the six initial matches if their error is sufficiently low, and dots only cease to be added when
no changes are detected from the previous iteration. In this way, all detected dots that can be
matched to pre-determined printed or projected dots are matched. We require a minimum of 25
matched dots in order to use the data from a captured frame in future calibration steps [Figs. 4(f)
and 4(g)].

2.5. Initialization of calibration parameters using device pairs

The intrinsic and extrinsic calibration parameters of each camera and projector are initialized
based on the matched dots, using toolboxes from a calibration toolbox for MATLAB [19]. This
approximate initialization step first calibrates the intrinsic parameters of each individual camera
and projector separately, before the extrinsic parameters are calculated for camera-projector and
camera-camera pairs.

First, the intrinsic camera parameters are calibrated based on the printed dots identified on the
calibration target. In general, calibration amounts to an error minimization problem between
detected and pre-determined dots with parameters defined by the calibration model. In the case
of intrinsic camera calibration, the error function is defined by Eq. (4)

min
ci Rbk:i,ci Tbk:i

ci ,Kci

K∑
k=1

cibk P̃
©
ci − cibkP

©
ci


2
, (4)

which is the squared sum of pixel error between the detected dots, cibk P̃
©
ci , and the pre-determined

printed dots reprojected on the camera image, cibkP
©
ci . The tilde (∼) is used to distinguish between

detected and pre-determined dots, while the symbols © and ⊗ are used distinguish between
printed and projected dots respectively (please note we do not use these symbols as mathematical
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operators in this work). The index ci is the ith camera, pi is the ith projector, and bk:i is the kth
of K calibration target (or board) positions seen by the ith camera. The left subscript is used
to indicate the context of the dots, which camera sees the dots and on which calibration target
position, and the right subscript is the reference frame. All other notation follows in the same
manner and is additionally listed in Table 4. The error function in Eq. (4) can be minimized by
optimizing the values of ciRbk:i , ciTbk:i

ci , and Kci . The 3D rotation matrix, ciRbk:i , is from reference
frame bk:i to ci, the 3D translation vector, ciTbk:i

ci , is from reference frame bk:i to ci written in the
ci reference frame, and Kci is the intrinsic calibration matrix for the ith camera. K is defined
generally in Eq. (5) for either cameras or projectors

K =


α 0 u0

0 β v0

0 0 1


, (5)

where constants α and β are proportional to the focal length, and (u0, v0) is principal point in
pixels. Whereas the detected dots, cibk P̃

©
ci , in Eq. (4) are already known, we need to compute the

pre-determined printed dots reprojected on the camera image, cibkP
©
ci . This is done by using Eq.

(6)
cibkP

©
ci λ = Kci · cibkX

©
ci = Kci

(
ciRbk:i · cibkX

©
bk:i
+ ciTbk:i

ci · J1,n

)
, (6)

where X are the 3D coordinates. Further, λ is used as in Eq. (3), to satisfy the constraint for 2D
homogeneous coordinates P, and J1,n is a matrix of all ones with size 1 × n. Here we use the
dot (·) throughout this paper to denote multiplication (not the dot product). By minimizing the
error function in Eq. (4), ciRbk:i , ciTbk:i

ci , and Kci can be computed for each camera by using a
calibration toolbox for MATLAB [19].
Next, the intrinsic calibration for each projector is computed based on the projected dots

identified on the calibration target. The error function that characterizes the projector calibrations
is defined in Eq. (7)

min
Kpi,

pi Rbk:i,pi Tbk:i

K∑
k=1

cipibk P̃
⊗
pi − cipibkP

⊗
pi


2, (7)

which is similar to the error function in Eq. (4) but written in projector pixel coordinates. While
we already have pre-determined projected dots cipibkP⊗pi in these coordinates, we need to transform
the detected dots from camera pixels cipibk P̃⊗ci to projector pixels cipibk P̃⊗pi . As a middle step,
we first find the 3D locations of detected dots cipibkX̃⊗bk:i

in each paired camera reference frame.
These are based on the known calibration target locations defined by ciRbk:i and ciTbk:i

ci , which we
computed in the previous camera calibration initialization. We can start by rewriting Eq. (6) as
Eq. (8)

cipibk P̃
⊗
ciλ = Kci · cipibkX̃

⊗
ci = Kci

(
ciRbk:i · cipibkX̃

⊗
bki
+ ciTbk:i

ci · J1,n

)
, (8)

which uses projected dots instead of printed dots. The third row of cipibkX̃⊗bk:i
[3, :] = 0, because

all of these points lie on the calibration target, so we can simplify this expression to

cipibk P̃
⊗
ciλ = Kci

[
ciRbk:i [:, 1] ciRbk:i [:, 2] ciTbk:i

ci

] 
cipibkX̃⊗bk:i

[1, :]

cipibkX̃⊗bk:i
[2, :]

1


, (9)
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where the first and second columns of ciRbk:i are ciRbk:i [:, 1] and ciRbk:i [:, 2] respectively. This
enables us to solve for the 3D coordinates on the calibration target, cipibkX̃⊗bk:i

, in Eq. (10)
cipibkX̃⊗bk:i

[1]

cipibkX̃⊗bk:i
[2]

1


=

(
Kci

[
ciRbk:i

1
ciRbk:i

2
ciTbk:i

ci

] )−1 (
cipibk P̃

⊗
ciλ

)
. (10)

The transformation from the calibration target to the projector is similar to Eq. (6) and is written
in Eq. (11)

cipibk P̃
⊗
piλ = Kpi · cipibkX̃

⊗
pi = Kpi

(
piRbk:i · cipibkX̃

⊗
bk:i
+ piTbk:i

pi · J1,n

)
. (11)

Now that the projector pixels cipibk P̃⊗pi have been computed, we can minimize the error function
in Eq. (7) to compute Kpi for each projector by using a calibration toolbox for MATLAB [19].
Lastly, the extrinsic parameters between camera-projector pairs and between neighboring

cameras are computed. For camera-projector pairs, the rotation matrices ciRpi and translation
vectors ciTpi

ci are computed by minimizing the error function in Eq. (12)

min
Kci,Kpi,

ci Rpi,ci Tpi
ci

K∑
k=1

cipibk P̃
⊗
pi − cipibkP

⊗
pi


2, (12)

which uses projected dot data. This calibration is similar to the intrinsic projector calibration in
Eq. (7), but directly relates the camera and projector reference frames. The calibration reference
frame is eliminated from the optimization by the relation in Eqs. (13) and (14)

ciRpi = ciRbk:i ·
(
piRbk:i

)T
, (13)

ciTpi
ci =

ciTbk:i
ci −

ciRpi · piTbk:i
pi , (14)

where T indicates the transpose of a matrix, which is equivalent to the inverse for a rotation
matrix. For neighboring cameras, the rotation matrices ciRcj and translation vectors ciTcj

ci are
computed by minimizing the error function in Eq. (15)

min
ci Rcj,ci T

cj
ci

K∑
k=1

cibk P̃
©
ci − cjbk P̃

©
ci


2
. (15)

This uses the printed dot data transformed to one of the two camera reference frames. Similarly,
to the camera-projector pairs, Eqs. (16) and (17) are used to relate calibration target positions to
different camera positions

ciRcj = ciRbk:i ·
(
cjRbk:i

)T
, (16)

ciTcj
ci =

ciTbk:i
ci −

ciRcj · cjTbk:i
cj . (17)

For neighboring camera calibrations, frames where the same printed dots are seen in multiple
cameras are logged. The I − 1 camera pairs with the most such frames are used to compute
rotations and translations between all cameras, where I = 4 is the number of cameras we used in
our particular setup. The camera-projector and camera-camera extrinsic parameters are computed
by minimizing the error functions defined in Eqs. (12) and (15) using the stereo calibration
routine section of a calibration toolbox for MATLAB [19]. Because the toolbox can only compute
extrinsic calibrations for two devices at a time, the errors between devices on opposite sides of the
setup buildup. This calibration is only approximate, because the optimization and connectivity
of the calibration of all cameras and projectors simultaneously, requires additional optimization
after this initialization step.
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Fig. 5. Flow chart of the entire calibration method. At the beginning of the calibration process, the
only known variables are the pre-determined printed and projected dot patterns. At the end, dots have
been detected, matched, and all calibration parameters optimized. The variables that are known at each
procedural calibration step are labeled in green throughout and summarized in the leftmost vertical set of
boxes. The notation of select variables has been shortened in the figure, and the full notation can be found
in the equations referenced in the figure. a-e) Each procedural calibration step is shown in the next column
of boxes with greater detail shown in Figs. 2-4 for the first three steps. e) The large box outlined in gray on
the right side of this figure is a zoomed-in view of the full simultaneous calibration algorithm detailed in
Section 2.6 of the text. Within this optimization, the calibration parameters are computed by minimizing
the reprojection error of the 3D locations of the pre-determined dots compared to the detected dots. f) Part
of the way through the full optimization (e), the positions of the detected dots are refined as detailed in
Section 2.7 of the text. The key at the bottom is a quick reference with further detail given in the text and
summarized in Table 4. The meanings of superscripts and subscripts, which can be applied to multiple
variables, are generalized by replacing the main variable with a dashed box.

2.6. Calibration optimization of all devices simultaneously

After the intrinsic and extrinsic calibration parameters are initialized for all the cameras and
projectors, a bundle-adjusted nonlinear least-squares solver is used to fine-tune the calibration.
During this fine-tuning process, accuracy is increased by solving the calibration errorminimization
problem with all dot data simultaneously. The accuracy is further increased by including
parameters that account for the movement of the calibration target in between frames and
the distortion of the sensor and lens geometry of the cameras and projectors. Additionally,
the accuracy is further increased by refining the center positions of detected dots using the
almost-complete calibration itself (procedure in Section 2.7). The calibration optimization
algorithm is visualized in Fig. 5 and expanded upon below.
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All of the calibration parameters (listed in Table 2) are optimized by minimizing reprojection
error [Fig. 5(e)]. This error function is defined as

min
All terms in Table2

(
E© + E ⊗

)
, (18)

and consists of the error in millimeters between pre-determined dots and detected dots reprojected
onto the calibration target. For this minimization problem, we use the trust-region-reflective
approach [53] as applied in the lsqnonlin function in MATLAB. The reprojection error has two
components: printed dot error, E©, and projected dot error, E ⊗. To compute the contribution
to the error by the printed dots, E©, the pre-determined printed dot positions, cibkX

©
b1,k

, are
compared to the detected dot positions

E© =
I∑

i=1

K∑
k=1

cibkX̃
©
b1,k
− cibkX

©
b1,k


2
. (19)

The detected dots reprojected onto the calibration target, on calibration target side number one
are labeled cibkX̃

©
b1,k

.
In order to compute the total error of the printed dots in Eq. (19), we need to solve for the

detected dot positions reprojected onto the calibration target, cibkX̃
©
b1,k

, by using the detected dot
positions in pixels, cibk P̃

©
ci . We do so similarly to the transformation made in the initialization

step in Eq. (10), but also including distortion and movement correction into the solution
cibkX̃

©
b1,k
[1, :]

cibkX̃
©
b1,k
[2, :]

1


=

[
RF [:, 1] RF [:, 2] TF

]−1 [
cibk P̃

©
ci

]
D
. (20)

The variables RF and TF are linear fits to correct for the movement of the calibration target,
detailed in Eqs. (21)-(24), and

[
cibk P̃

©
ci

]
D
is cibk P̃

©
ci adjusted for device distortion and normalized

by Kci , detailed in Eqs. (25)-(28).
First, we define the linear fits to correct for the small rotational and translational movements of

the calibration target in the calibration space. RF and TF and are defined in Eqs. (21) and (22) as
follows

RF =
ciRw · rod−1

(
rod

(
wRb1,k

)
+ Bbk

R

(
f r (i) − F + 1

2

))
R∗, (21)

TF =
ciRw ·

(
wTb1,k

w + Bbk
T

(
f r (i) − F + 1

2

)
− wTci

w − T∗
)
, (22)

where the Rodrigues transformation [54] function is denoted as rod( ) and transforms a 3 × 3
matrix into a 3 × 1 vector. The inverse function is denoted as rod−1 (). The value of f r (i) is
the frame number out of F = 6 total frames per sequence of frames, as shown in Fig. 2(c)
for our particular setup. wRb1,k and wTb1,k

w are the average rotational and translational position
of the calibration target in the kth sequence of frames. Finally, Bbk

R and Bbk
T are the linear

fitting parameters to account for movement between frames. A linear fit is the best first order
approximation of movement for rotation, because the Rodrigues function is linear in the limit of
small angular displacements. The world reference frame, denoted with index w, is equivalent to
the reference frame of the first camera. We define the rigid transformations between both sides of
the calibration target as R∗ and T∗, which completes Eqs. (21) and (22). We can do this because
the printed dot patterns on both side of the calibration target do not move relative to each other.
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Table 2. Summary of variables that are optimized during simultaneous calibration of all cameras
and projectors. These variables are optimized by minimizing the reprojection error function in
Eq. (18) using a nonlinear least-squares solver. The number of variables that are optimized for
our particular setup are listed for each category of variables (cameras, projectors, and calibration
target positions). The * indicates that the rotation and translation of the first camera are set to the
identity matrix and origin respectively by design. Including more optimization variables correlates
with higher computational cost, so we see that the primary expense lies in solving for the calibration
target positions (as exemplified for this particular calibration trial). While these calibration target
positions are not the primary goal of the calibration, they are necessary building blocks to compute
the primary parameters of interest: the camera and projector calibration variables.

Parameters
per item

Total
parameters

Cameras I = 4 (setup specific)

Intrinsic Kci 4 16

Rotational* ciRw 3 9

Translational* ciTw
w 3 9

Distortion D = 6 ds−ci, dr1−ci, dr2−ci, dr3−ci, dt1−ci, dt2−ci 6 24

Total camera parameters 58

Projectors J = 4 (setup specific)

Intrinsic Kpj 4 16

Rotational pjRw 3 12

Translational pjTw
w 3 12

Distortion D = 6 ds−pj, dr1−pj, dr2−pj, dr3−pj, dt1−pj, dt2−pj 6 24

Total projector parameters 64

Calibration Target Positions K = 181 (calibration specific)

Rotational b1,kRw 3 543

Translational b1,kTw
w 3 543

Rotational linear fit Bbk
R 3 543

Translational linear fit Bbk
T 3 543

Board side 1 to 2 b2,kTb1,k
b1,k
, b2,kRb1,k (θ) 4

Total target parameters 2176

Total parameters 2298

*1st camera position and orientation pre-defined

In the case that the ith camera sees side one of the calibration target, these transformations are
equal the identity matrix and zero respectively. When side two of the calibration target is visible,
Eqs. (23) and (24) are used

R∗ = b2,kRb1,k (θ) , (23)

T∗ = wRb1,k · b2,kTb1,k
b1,k
, (24)
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where b2,kRb1,k and b2,kTb1,k
b1,k

are the rotation matrix and translation vector from side one to side
two of the target. The rotation and translation does not change for different values of k. Since the
two sides of the board are parallel to each other, b2,kRb1,k is only a function of a single angle θ.

Second, we define the device distortion of a pixel,
[
cibk P̃

©
ci

]
D
, as used in Eq. (20) to incorporate

the calibration parameters that account for distortion of the sensor and lens geometry of the
cameras and projectors. In order to simplify the notation, we define x and y as

[
cibk P̃

©
ci [:,m]

]
D
=


x

y

1


, (25)

for the mth of n points in cibk P̃
©
ci . The distortion equations are nonlinear, so we must solve for x

and y by minimizing the following equation

min
x,y

cibk P̃
©
ci [:,m] λ −

^

KciD (x, y)


2
, (26)

where r2 = x2 + y2, D (x, y) is defined in Eq. (27), and
^

K is defined in Eq. (28)

D (x, y) =


(
1 + dr1r2 + dr2r4 + dr3r6) x + 2dt1xy + dt2

(
r2 + 2x2)(

1 + dr1r2 + dr2r4 + dr3r6) y + 2dt2xy + dt1
(
r2 + 2y2)

1


, (27)

^

K =


α dsα u0

0 β v0

0 0 1


. (28)

Here, ds is the skew distortion coefficient, dr1, dr2, dr3 are the radial distortion coefficients, and
dt1, dt2 are the tangential distortion coefficients [19]. For some cameras and projectors, the skew
distortion is negligible and thus ds can be set to zero. Often, dr3 or additionally dr2 may be set to
zero to avoid overfitting the data. Now that the movement correction and distortion are defined,
we can compute the values of cibkX̃

©
b1,k

needed to compute the printed dot reprojection error, E©,
in Eq. (19). However, the reprojection error of the projected dots, E ⊗, remains to be computed.
The projected dot error, E ⊗, can be computed similarly to the printed dot error, E©, both

of which are needed to optimize all of the calibration parameters simultaneously. For this
computation, both the detected projected dots, cipjbk P̃⊗ci , and the pre-determined projected dots,
cipjbkP⊗pj , must be reprojected onto the calibration target as cipjbkX̃⊗b1,k

and cipjbkX⊗b1,k
respectively,

and compared. The reprojection error is defined as

E ⊗ =
I∑

i=1

J∑
j=1

K∑
k=1

cipjbkX̃
⊗
b1,k
− cipjbkX

⊗
b1,k


2
, (29)

where J = 4 is the number of projectors we used in our particular setup. Since the projector is
modeled in the same way as the camera, Eqs. (20)-(28) are used in a similar manner to solve
for cipjbkX̃⊗b1,k

and cipjbkX⊗b1,k
. This differs from the above computation where the printed dots

cibkX
©
b1,k

are known and only cibkX̃
©
b1,k

needs to be computed from cibk P̃
©
ci using Eqs. (20)-(28).
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Finally, the total reprojection error in Eq. (18) can be evaluated and minimized while
implementing bundle adjustment for increased speed. Bundle adjustment is a technique that uses
the pattern of the dot data that is fed into the nonlinear solver to reduce the computational time
required [55]. Most nonlinear solvers compute the Jacobian at each refinement step. Bundle
adjustment eliminates the need to compute any Jacobian value that is known to equal zero based
on the pattern of the data. The total number of variables which are optimized are summarized
in Table 2. The variables in Table 2 vary based on the number of cameras, I, the number of
projectors, J, and the number of calibration target positions, K . They additionally vary based on
the type of fit used to account for target position motion in between frames, and the number of
distortion parameters fit. Prior to bundle adjustment, the number of elements in the Jacobian
that need to be computed equals the size of the Jacobian matrix, NJacobian. This is the number of
optimized variables times the number of total dots, as Eq. (30) shows

NJacobian = 2 ((16I − 6) + (16J) + (12K + 4))
(
N© + N ⊗

)
, (30)

where N© and N ⊗ are the number of detected printed and projected dots respectively. After
bundle adjustment, the number of elements that need to be computed, NJacobian−adj, drops
significantly as Eq. (31) shows

NJacobian−adj = 2
(
16

(
N© + N ⊗

)
− 6Nc1

)
+ 2

(
16N ⊗

)
+ 2

(
12

(
N© + N ⊗

)
+ 4Nb2

)
. (31)

Nc1 is the number of dots that the first camera detects, and Nb2 is the number of dots detected
on the second side of the calibration target. If many distinct calibration target positions are
used, then the number of dots seen by each camera becomes similar, Nc1 ≈ I−1 (

N© + N ⊗
)
and

Nb2 ≈ 0.5
(
N© + N ⊗

)
, enabling Eq. (31) to be simplified to Eq. (32)

NJacobian−adj ≈ 2
(
30 − 6

I

) (
N© + N ⊗

)
+ 2

(
16N ⊗

)
. (32)

Thus, for our specific implementation and calibration trial where N© = 78756 and N ⊗ = 66055,
the approximate increase in speed gained by computing the Jacobian using bundle adjustment
is NJacobian

/
NJacobian−adj = 64 times faster. To further decrease the computational time, we use

parallel processing to solve the total reprojection error in Eq. (18). We also use an analytical
solution to calculate the Jacobian to account for distortion in Eqs. (25)-(28).

2.7. Dot center location calculation with subpixel accuracy

To increase the accuracy of the detected dot centers, a final refinement and filtering step is
used part of the way through the final optimization (Section 2.6). In order to balance low
computational time with high accuracy, this final refinement step is conducted after 10 iterations
of the gradient decent in the final optimization. We chose 10 iterations after observing multiple
different calibration trials. In all of the trials, the change in error was deemed sufficiently minimal
before 10 iterations had been completed. After the refined dot centers are computed, the final
optimization continues to convergence, as shown in Figs. 5(e) and 5(f). We define convergence
as the point when the minimization function, Eq. (18), changes by less than 1e-06 mm between
iterations.
The detection of dot centers needs to be refined for two reasons. First, the circles are skewed

non-elliptically during the calibration. Thus, the subpixel edges of detected dots cannot be
accurately approximated by an ellipse, as assumed in Section 2.3. Wu et al. [31] explained
this effect by pointing out that when circles are projected and viewed through distorted lenses
and sensors, they skew non-linearly. Second, the circle fitting accuracy is decreased by the
sequential steps used to fit each ellipse. Ellipses were fit to the edges identified with the subpixel
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edge detector [52]. A better method is to fit each ellipse and its edges simultaneously, so that
information is not lost in between steps, which we apply here.
We refine the computation of the centers of the detected dots by transforming data between

reference frames and fitting dots in the reference frame where they are circular. This is achieved
by using the nearly-complete calibration to transform the camera image pixel intensities of printed
and projected detected dots into the calibration target and projector reference frames respectively(

uci, vci, Ici

(
uci, vci

) )
→

(
abk/pj, bbk/pj, Ici

(
uci, vci

) )
. (33)

The coordinates in camera pixels are u, v, the coordinates in either the calibration target or
projector pixels are a, b, and the grayscale intensity of camera images is Ici . In this reference
frame, a different edge detection technique can be used to more accurately fit each circle and
its edges simultaneously. For projected dots, any pixels that are found to overlap printed dots
are deleted, to ensure consistent reflective characteristics. The overlap is easy to identify since
the approximate locations of all printed and projected dots have been identified, in contrast to
the initial effort to do so in Section 2.3. After the detected dot pixels are transformed to either
the calibration target or projector reference frame, a circular sigmoid function is used to fit the
circular dot in Eq. (34)

min
a,b,R,c1,c2,c3

∑
Dot pixels

 c1

1 + ec3(r(a,b)−R)
+ c2 − Ici

(
uci, vci

)
2
, (34)

r (a, b) =
√(

abki/pj − a
)2
+

(
bbk/pj − b

)2
. (35)

This equation has fitting parameters a, b, R, c1, c2, c3 where r is defined as a function of a and b
in Eq. (35). A similar technique for robustly fitting edges of known shapes is used in [56]. The
refined center of the detected dot is at a, b, the radius is R, the difference in brightness between
the inside and outside of the dot is c1, the brightness outside the dot is c2, and c3 scales with
image blur.

The detected dot characteristics defined by these six fitting parameters can additionally be used
as a final filtering step to eliminate blurry or noisy detected dots. In order to generalize the filters
for any dot size and image intensity, limits are placed on three dimensionless numbers, which are
defined using the fitting parameters. First, to reject noisy data points, we required the standard
deviation of the error in Eq. (34), scaled by the contrast, c1, to be less than 0.35. This was true
for 98.5 % of printed dots and 97.3 % of projected dots for our particular setup and calibration.
Second, to reject blurry data points, we required c3

/
Rb/p > 2.5, where Rb/p is the known radius

of printed or projected dots. This was true for 99.8 % of printed dots and 99.1 % of projected
dots. Lastly, to reject poorly fit data points, we required 0.8Rb/p < R < 1.2Rb/p, which was true
for 99.8 % of printed dots and 93.6 % of projected dots. In total, 98.2 % of printed dots and 89.6
% of projected dots remained. These remaining refined dot centers are then transformed back
into the camera reference frame in pixels, where they are used to complete the final optimization
in Section 2.6.

3. Results and discussion

We present a novel calibration technique to accurately and automatically calibrate multiple
cameras and projectors simultaneously. Volumetric 3D surface reconstructions of deforming
objects can be achieved at high-speed, by combining the calibration technique presented here,
with the binary single-shot algorithm published in Deetjen et al. 2017 [14] for a single camera-
projector pair. Here we present the essential hardware and algorithmic solutions needed to
combine and calibrate multiple synchronized high-speed camera-projector pairs. During 3D
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Fig. 6. Final calibration of four cameras and four projectors that are calibrated simultaneously [Fig. 1].
Three different colors are used for the four camera-projector pairs (the two different shades of blue used
in this figure are solely used to graphically distinguish the pairs using the same blue projection color and
filter). The 3D locations of the detected dots and the corresponding detected calibration target positions are
displayed in the color corresponding to the camera in which the dot was detected. The coordinate system is
relative to the first camera, subscript c1, and all units are in millimeters. The mean absolute value of the
reprojection error is 0.094 mm, which is 0.023 % of the diameter of the calibration volume.

surface reconstruction [Fig. 1], the cross-talk between cameras and projectors is controlled by
projecting using specific colors. These colors are matched by the camera color filters for each
camera-projector pair. During calibration, each projector projects in each color sequentially [Fig.
2] to increase connectivity between cameras and projectors.

In order to easily and automatically calibrate all devices simultaneously, we designed a patterned
2D calibration target, a projection pattern, and corresponding image processing methods. Gray
printed dots are printed in a pseudo-random pattern on both sides of the calibration target for
camera calibration. The dots are gray rather than black to enable detection of projected dots
overlapping with printed dots on the same target. The user moves the calibration target around
the calibration volume, while all cameras record a quick burst of images of the illuminated target
(separated by periodic intervals to reduce data). During a burst, each camera first records an
image of the printed dot pattern illuminated by its paired projector. Next, the cameras record a
dot pattern from each visible projector, by directing each projector to sequentially project dots
in multiple colors [Fig. 2]. The dot patterns captured by the cameras [Fig. 5(a)] are processed
with algorithms to find the dots on the target and ignore the rest [Fig. 3 and Fig. 5(b)]. Dot
detection is aided by relatively sparse dot patterns and printing gray rather than black dots. Once
the subsequent algorithm is used to match the detected dots with the pre-determined printed or
projected dots [Fig. 4 and Fig. 5(c)], all cameras and projectors can be calibrated simultaneously
[Fig. 5(e)].

To assess the importance of different steps in the calibration process, we compare the accuracy
of the final calibration against the less complete calibration intermediate models. The calibration
we used for our analysis is based on 181 calibration target positions, for which we automatically
detected the printed and projected dots to compute the camera and projector calibration parameters
[Fig. 6]. When we calibrate each device and the connections between them separately, as is
done in the initialization step [Fig. 5(d)], the mean absolute value of the reprojection error for
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Fig. 7. We demonstrate the accuracy of our structured light system by automatically 3D reconstructing a
sphere of known dimensions (structured light system: Fig. 1; calibration: Fig. 6). a) The 3D reconstructed
surface of a sphere based on 8 separate images plotted on top of each other for 8 locations in the calibrated
volume [Fig. 6]. b-c) The best accuracy is achieved at the stripe intersections, because they correspond to
two known projection planes. The remaining points are reconstructed based on one projection plane, which
reduces accuracy. The mean absolute value of the error of the 3D surface reconstruction is -0.11 ± 0.38 mm
for intersection points (b) and -0.25 ± 0.79 mm for all of the points combined (c). d) Surface reconstruction
of the sphere in position 2 (Table 3) based on 8 imaging frames. Filled circles indicate 3D reconstructed
stripe intersections of the hash pattern. e) Error in the reconstruction of the sphere in (d) based on the more
accurate stripe intersections. f) Error in the reconstruction for all pixel positions along each stipe.

the printed and projected dots together is 0.97 mm. This initialization step does not include
parameters to correct for distortion or calibration target movement. When we add connectivity
between all of the devices by calibrating everything simultaneously [Fig. 5(e)], the reprojection
error drops to 0.22 mm. For the final calibration, we optimized across all parameters in Table 2,
including parameters to correct for distortion and calibration target movement [Fig. 5(f)]. The
mean absolute value of the reprojection error for this final calibration drops to 0.094 mm, which
translates to an average of 0.17 pixels in the camera images. Normalized by the diameter of the
calibration volume (406 mm; diameter of a sphere with equal volume to the convex geometry
of all calibration points), the mean absolute value of the reprojection error is 0.023 % of the
calibration volume.
We 3D reconstructed the volumetric surface of a well-defined gray sphere to evaluate the
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Table 3. Accuracy of the 3D reconstruction of a sphere of known dimensions (diameter 82.55 ± 0.13
mm) averaged over 8 imaging frames for each of the eight locations in Fig. 7(a). Stripe intersection
points are more accurate than the rest of the points, because they are reconstructed based on two
projection planes rather than one. The accuracy is the mean error ± precision (s.d.). The absolute
error is given inmmand the relative error as a percentage of the average calibration volume diameter
406 mm.

Position Intersection points error All points Error

1 -0.19 ± 0.30 mm -0.05 ± 0.07 % -0.25 ± 0.35 mm -0.06 ± 0.09 %

2 -0.00 ± 0.37 mm -0.00 ± 0.09 % -0.21 ± 0.65 mm -0.05 ± 0.16 %

3 -0.31 ± 0.37 mm -0.08 ± 0.09 % -0.47 ± 0.62 mm -0.12 ± 0.15 %

4 -0.06 ± 0.25 mm -0.01 ± 0.06 % -0.29 ± 1.23 mm -0.07 ± 0.30 %

5 -0.13 ± 0.31 mm -0.03 ± 0.08 % -0.19 ± 0.38 mm -0.05 ± 0.09 %

6 0.05 ± 0.46 mm 0.01 ± 0.11 % -0.08 ± 0.72 mm -0.02 ± 0.18 %

7 -0.19 ± 0.44 mm -0.05 ± 0.11 % -0.42 ± 0.81 mm -0.10 ± 0.20 %

8 -0.05 ± 0.38 mm -0.01 ± 0.09 % -0.11 ± 1.29 mm -0.03 ± 0.32 %

All -0.11 ± 0.38 mm -0.03 ± 0.09 % -0.25 ± 0.79 mm -0.06 ± 0.20 %

accuracy and precision of the calibration method. To determine the surfaces we use our binary
single-shot high-speed 3D reconstruction algorithm [Fig. 7], which we previously developed [14].
The reconstruction is based on a locally-unique "hash" projection pattern of perpendicularly
intersecting stripes. We use the calibration to compute and merge the 3D surface reconstructions
for each camera-projector pair. To quantify how performance varies throughout the calibration
volume, we placed the sphere in eight different locations and reconstructed it in each position. To
compensate for the reduced reflectivity of the gray sphere, we lengthened the exposure time to
4.9 ms to image it in each position. We then manually removed the background of the sphere
in each image for convenience (the background of the sphere was not optimized for automatic
removal in long-exposure conditions).
To account for image processing limitations in the 3D reconstruction algorithm, "voxel

carving" [57], "incorrect stripe matching", and "low triangulation angle" filters were added to the
technique in [14]. The voxel carving filter uses the calibration, together with the multiple camera
views, to remove some of the incorrectly reconstructed points. It does this by only retaining 3D
points which lie on the object being reconstructed when reprojected into each 2D camera view.
The incorrect stripe matching filter identifies stripes in the "hash" projection pattern which are
incorrectly matched in the camera images. This is done by comparing the 3D error between the
best and the next-best stripe matches between each camera image and the projected pattern. The
best match should have an error that is significantly lower than the next-best match; if this is not
the case, the stripe is removed. The low triangulation angle filter removes reconstructed points
that are disproportionally sensitive to image processing and calibration errors. Triangulation
angle is the angle between the projection plane produced by a stripe, and the camera vector
produced by a pixel on that stripe. Using the triangulation angle and the calibration accuracy,
we compute the predicted error of 3D reconstructed points for each pixel on each stripe. To
compute predicted error for all these points, we calculate the predicted error at all intersections of
perpendicular stripes, and then subsequently interpolate between these locations. The predicted
error can be computed at stripe intersections, because they have the highest 3D reconstruction
accuracy, thanks to the extra information that is available for reconstruction (two stripes rather
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Fig. 8. Snapshot of a preliminary 3200 fps 3D-surface reconstruction of a Pacific Parrotlet during takeoff,
flapping its morphing wings at 20 Hz. a) Color recording of the four projected color patterns on the bird
(recorded with a 5th camera not shown in Fig. 1; Phantom LC-310; Vision Research, Wayne, NJ, USA).
b) The images captured by the four cameras recording the structured light projected on the bird’s surface
(contrast enhanced). From left to right, the views show the camera looking down at the bird (blue light),
looking up at the bird (blue light), looking at the right side of the bird (green light), and looking at the
left side of the bird (red light). c) A preliminary 3D surface reconstruction of a downstroke of the Pacific
Parrotlet in flight. The image processing artifacts and gaps seen in the reconstructions are similar to others
found in this region of the downstroke. The bottom surface of the bird (light blue) is reconstructed from
frames that are delayed by 1/3200 seconds from the other camera-projector pairs, so that the two blue
camera-projector pairs do not overlap. The third reconstructed frame in (c) corresponds to all of the frames
in (a) and (b). The first three frames in (c) correspond to 73 %, 87 %, and 100 % of the first downstroke
after takeoff, and the final frame corresponds to 13 % of the next upstroke.

than the normal one stripe). Predicted error at stripe intersections is computed for both stripe
directions, by comparing the 3D reconstruction using both stripes, with the 3D reconstruction
using only one of the stripes. When implementing this low triangulation angle filter, we chose
to remove points on stripes with a predicted error higher than 3.0 mm (spanning 0.74 % of the
calibration volume diameter). This length-based cutoff was selected to eliminate obvious outliers,
while closely maintaining the shape of the probability density function of the error shown in Fig.
7(c).

After filtering the outliers, the accuracy of the multi-view structured light system is quantified
by 3D reconstructing a sphere in 8 locations of the calibration volume [Fig. 7]. The accuracy of
the reconstructed data points varies depending on whether they lie at stripe intersections in the
"hash" structured light pattern, or at other pixels along a stripe. Points at stripe intersections
have two stripes rather than the normal one stripe, so the accuracy is higher. This difference in
accuracy can be understood as follows. Each of the two stripes form a projection plane, while
together the two projection planes form a projection vector. The 3D reconstruction of stripe
intersection points is thus computed as the closest 3D point between the projection vector and
the camera vector. This is the standard method for triangulation in non-high-speed structured
light applications [5]. The remaining points on the stripes are reconstructed with a lower
accuracy, because our monochrome "hash" pattern design sacrifices accuracy for the ability to
3D reconstruct based on a single image. We quantify the accuracy as the error between the 3D
reconstructed data and the spherical fit of that data, using the known sphere diameter (82.55 ±
0.13 mm). The accuracy of the 3D reconstruction algorithm is -0.25 mm (mean error) and the
precision is ± 0.79 mm (s.d. of error) for all 874,282 3D reconstructed points across all eight
sphere locations. The associated 45,056 stripe intersection points are more accurately resolved,
with an accuracy and precision of -0.11 ± 0.38 mm. The accuracy and precision for each of the
eight sphere locations is given in Table 3 and shows the performance is consistent across the
volume.

Finally, we present snapshots of a partial 3D volumetric surface reconstruction of a freely
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flying bird by combining the calibration method presented here with the structured light system
we previously developed [14] and used for the sphere [Fig. 7]. The bird flapped its wings at 20
Hz during takeoff and we reconstructed its first downstroke [Fig. 8]. The calibration used to
reconstruct the 3D surface of the bird had a mean absolute value reprojection error of 0.11 mm
across the 95 different calibration target positions. The reconstruction demonstrates how the
method presented here can be used to 3D reconstruct a rapidly moving and deforming, complex,
surface. However more cameras and projectors are needed to fully reconstruct the body and
wings. Further, a new algorithm is needed to reconstruct the depth edges of the bird, which are
present at the leading and trailing edges of the wings and tail.
In conclusion, this novel calibration technique is the first automated method to calibrate

multiple cameras and projectors simultaneously, which is particularly relevant for high-speed
volumetric imaging of rapidly moving and deforming objects. The simultaneous rather than
sequential calibration of all devices increases accuracy, and the unique printed and projected
patterns enable full automation. The only calibration hardware required is an easily manufactured
calibration target that can be moved around by the user in a wide range of calibration volumes.
The image acquisition is straightforward and requires a single recording of ∼1000 frames for each
camera imaging the calibration target in about ∼180 positions. For our setup, in which we moved
the calibration target by hand, this took about 2 minutes. When combined with our published
algorithm for 3D reconstructing the surface of an object using a single camera-projector pair [14],
the entire pipeline for 3D reconstructing object surfaces from multiple views at high-speed is
automated. The relative accuracy and precision of -0.03 ± 0.09 % of the diameter of a sphere,
shows the promise of our method for a diverse set of measurement applications. Although
further work is needed to fully 3D reconstruct the deforming 3D surfaces of particularly complex
geometries, such as flying birds, we demonstrated the ability in principle. Further, other structured
light methods [10–13] can now be adapted for automated high-speed usage to achieve similar
results using our automated calibration method for multiple cameras and projectors. While we
demonstrated the calibration method for four camera-projector pairs, it can be used to calibrate
multi-view structured light systems in general with larger numbers of cameras and projectors.
The applications range from 3D motion capture for computer generated movies, to consumer
products, autonomous systems, industrial quality control, and scientific research in general.

Appendix: Notation

Table 4. Variable definitions.

Variable/Function Description/Equation Size

Intrinsic device calibration

Kci/pi Intrinsic device (camera or projector) calibration matrix for
the ith camera or ith projector

3 × 3

α, β Device focal length (x, y), α = K [1, 1], β = K [2, 2] 1

u0, v0 Device principal point (x, y), u0 = K [1, 3], v0 = K [2, 3] 1

dr1, dr2, dr3 1st, 2nd, and 3rd radial distortion coefficient 1

dt1, dt2 1st and 2nd tangential distortion coefficient 1

ds Skew distortion coefficient 1

Extrinsic device calibration
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ARB Rotation matrix from reference frame B to reference frame
A where ARB = ARC · CRB

3 × 3

ATB
C Translation vector from reference frame B to reference

frame A written in reference frame C
3 × 1

Bbk
R Linear fitting parameters to account for rotation of the kth

calibration target position between frames
3 × 1

Bbk
T Linear fitting parameters to account for translation of the

kth calibration target position between frames
3 × 1

Notation

cibk/cipjbk P̃
©/⊗
ci/pi/bk

Notation for dots P or X
Left subscript: where dots originate/are seen
Right subscript: reference frame
Right superscript: printed, ©, or projected, ⊗, dots
Top: detected (∼) vs. pre-determined (no accent) dots

3 × n

ci,w = c1 Subscript: ith camera. World reference frame is the 1st
camera reference frame

N/A

pi Subscript: ith projector N/A

bk:i, bk·i, b2,k, bk Subscript: kth calibration target with designation based on
how the target was seen. bk:i: seen by the ith camera; bk·i:
seen by the ith projector; b2,k: target side 2; bk = b1,k

N/A

X 3D coordinates 3 × n

P 2D homogeneous coordinates where P [1, :] and P [2, :] are
pixel coordinates on the camera or projector and P [3, :] = 1

3 × n

λ Diagonalmatrix of constants used to convert 3D coordinates
to 2D homogeneous coordinates so that the P [3, :] = 1
constraint is satisfied

n × n

A [:, i] ith column of A matrix _ × 1

A [i, :] ith row of A matrix 1 × _
^

K This added symbol indicates that the intrinsic device cali-
bration matrix definition includes the skew distortion coef-
ficient

3 × 3

Constants

I Number of cameras 1

J Number of projectors 1

K Number of calibration target positions 1

F Number of sequential frames captured by cameras in a
single burst

1

f r (i) ith sequential frame number out of F frames 1

N©/⊗ Total number of detected printed, ©, or projected, ⊗, dots 1
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NJacobian Total number of values computed in the Jacobian of the full
calibration minimization function without bundle adjust-
ment

1

NJacobian−adj Total number of values computed in the Jacobian of the full
calibration minimization function with bundle adjustment

1

Circular sigmoid dot fit

a, b Fitting parameters 1-2: center of the dot being fit 1

R Fitting parameter 3: radius of the dot being fit 1

c1 Fitting parameter 4: contrast between outside and inside
dot

1

c2 Fitting parameter 5: brightness outside dot 1

c3 Fitting parameter 6: measure of blurriness 1

Ici

(
uci, vci

)
Grayscale intensity of camera image at the coordinates(
uci, vci

) 1(
abki/pj, bbki/pj

)
Coordinates in either projector pixels or the calibration
target reference frame transformed from

(
uci, vci

) 1

Other

E©/⊗ Sum of reprojection error between pre-determined printed,
©, or projected, ⊗, dot positions and detected dots

1

H 2D planar homography between detected dots and printed
or projected dots

3 × 3

R3×1 = rod (R3×3) Rodrigues transformation to transform a 3 × 3 rotation
matrix into a 3 × 1 vector

N/A

R3×3 = rod−1 (R3×1) Inverse Rodrigues transformation to transform a 3×1 vector
into a 3 × 3 rotation matrix

N/A

J1,n Matrix of all ones 1 × n
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