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Abstract
The moments and torques acting on a deforming body determine its stability and maneuverability. For animals, robots, vehi-
cles, and other deforming objects locomoting in liquid or gaseous fluids, these fluid moments are challenging to accurately 
measure during unconstrained motion. Particle image velocimetry and aerodynamic force platforms have the potential to 
resolve this challenge through the use of control surface integration. These measurement techniques have previously been 
used to recover fluid forces. Here, we show how control surface integration can similarly be used to recover the 3D fluid 
moments generated about a deforming body’s center of mass. We first derive a general formulation that can be applied to 
any body locomoting in a fluid. We then show when and how this formulation can be greatly simplified without loss of 
accuracy for conditions commonly encountered during fluid experiments, such as for tests done in wind or water channels. 
Finally, we provide detailed formulations to show how measurements from an aerodynamic force platform can be used to 
determine the net instantaneous moments generated by a freely flying body. These formulations also apply more generally 
to other fluid applications, such as underwater swimming or locomotion over water surfaces.

Graphic abstract

1  Introduction

Animals and robots locomoting on the ground, in the water, 
or in the air all generate forces and moments that dictate 
their motion. More emphasis is often placed on quantify-
ing forces, which determine the linear accelerations of these 

deforming bodies, rather than the moments that result in 
their angular acceleration. However, the moments and tor-
ques about a body’s center of mass determine the body’s 
stability and maneuverability, making them just as critical 
to quantify.

The greatest depth of research into locomotion dynam-
ics understandably lies in human biomechanics. While most 
studies in this field focus on forces and joint moments, sev-
eral have examined moments and torques about a person’s 
center of mass, especially in sports biomechanics [e.g. long-
jumps (Ramey 1974), somersaults (Yeadon 1990), high-bar 
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dismounts (Hiley and Yeadon 2003), and ski jumps (Arndt 
et al. 1995)]. These studies often combine the use of experi-
mentally measured kinematics with modeled bodies to quan-
tify forces and moments. To critically improve the accuracy 
of measured ground reaction forces, several studies have 
incorporated the use of instrumented trackways (Winter 
2009; Zatsiorsky and Zaciorskij 2002). Since the invention 
of these terrestrial force platforms more than a century ago 
(Baker 2007), they have played a pivotal role in the analysis 
of terrestrial locomotion. More recent efforts (Anand and 
Seipel 2019) have been made towards using these terrestrial 
platforms to evaluate the ground reaction forces responsible 
for generating moments about a body’s center of mass.

Terrestrial force platforms have also been instrumental 
in the study of animal and robot locomotion. Many animal 
studies still rely on combining kinematic measurements 
with modeled bodies, especially when it comes to study-
ing body moments and torques (Yeadon 1990; Libby et al. 
2012). However, through the use of terrestrial force plat-
forms, direct force measurements have now been made for a 
diverse range of animals, including cockroaches (Full et al. 
1991), kangaroo rats (Biewener et al. 1988), chipmunks 
(Lammers and Zurcher 2011), frogs (Ahn et al. 2004), and 
horses (Biewener 1998). Similarly, while robot studies often 
rely on modeling, especially for moment analyses (Libby 
et al. 2012; Park et al. 2009; Popovic et al. 2005), force 
platforms (Vukobratovic et al. 2012) or instrumented feet 
have been used to directly measure forces in legged robots 
(Sardain and Bessonnet 2004).

Fluid locomotion studies, on the other hand, require a dif-
ferent approach for quantifying the net forces and moments 
on a body. In studies of human swimming, these alternative 
approaches have involved people pulling themselves along 
an instrumented underwater ladder (Toussaint and Vervoorn 
1990) or swimming while tethered to a load cell (Morouço 
et al. 2011). In animal flight studies, tethered locomotion has 
been used to quantify forces exerted by insects (Lehmann 
and Dickinson 1998; Sugiura and Dickinson 2009; Dickin-
son and Götz 1996) and birds (Woike and Gewecke 1978; 
Marey 1890). Problematically, all of these methods involve 
constrained locomotion, which does not work well for study-
ing maneuvers that involve body moments and torques. Fur-
thermore, constrained methods are ill-suited for studying 
deforming bodies, especially because these methods cannot 
accurately capture inertia effects. Animal welfare concerns 
aside, imposing constraints may also limit or change an ani-
mal’s natural movement, especially when significant body 
deformations are required for generating propulsion.

A popular non-intrusive method for studying fluid loco-
motion is the use of robotic models. These instrumented 
robots can be designed to mimic biological motion inside of 
a flow tank, water or wind tunnel (Georgiades et al. 2009; 
Triantafyllou et al. 2004; Tan et al. 2007; Dickinson et al. 

1999; Lehmann and Pick 2007; Dickson and Dickinson 2004; 
Bahlman et al. 2013; Hubel and Tropea 2010; Ellington et al. 
1996). A potential advantage of using robotic models is that 
forces generated by different propulsive surfaces can be iso-
lated and compared. These studies again focus primarily on 
forces, but there have been some studies that have obtained 
direct measurements of roll, yaw, or pitch moments during 
animal flight (Cheng et al. 2011; Tucker 2000; Fry et al. 
2003). Other non-intrusive methods used to understand the 
inertial and fluid moments involved during aerial (Dickson 
et al. 2008; Ennos 1989; Azuma and Watanabe 1988; Lin et al. 
2012; Hedrick et al. 2007, 2009; Taylor and Thomas 2002; 
Dudley 2002) or aquatic locomotion (Lauder and Drucker 
2003; Yates 1986) combine measured kinematics with theo-
retical models and/or computer simulations. However, these 
models generally require a number of simplifying assump-
tions; in fish locomotion, for instance, no studies quantify the 
effects of both the moving body and the fins (Lauder 2010). 
The force and moment measurements derived in these studies 
are also difficult to validate directly (Peng and Dabiri 2010).

To actually measure in vivo fluid forces non-intrusively, 
engineers invented control volume analysis to (simplify and) 
integrate the Navier–Stokes equations (Vincenti 1982). If 
the pressure field cannot be measured, then fluid forces and 
moments can be determined based on velocity and vorticity 
fields, which are generally determined either computation-
ally or using particle image velocimetry (PIV) (Protas 2007; 
Howe 1995; Quartapelle and Napolitano 1983; Ragazzo and 
Tabak 2007; Magnaudet 2011; Wu 1981). Alternatively, the 
control volume analysis can be simplified by rewriting it 
into a control surface analysis (Lentink 2018; Rival and van 
Oudheusden 2017; Wu et al. 2005). Fluid forces can then be 
recovered by measuring velocity, pressure and shear stress 
fields on the control surface. The two main experimental 
implementations of this control surface analysis are high-
speed particle image velocimetry (PIV) (Rival and van 
Oudheusden 2017), and the aerodynamic force platform 
(AFP) (Lentink 2018). Lentink (2018) recently derived 
theory to find the conditions under which the control sur-
face formulation of the Navier–Stokes equations can be used 
to accurately recover fluid forces based on PIV and AFP 
measurements. PIV involves indirect numerical integration 
of the measured flow field, while the AFP involves direct 
mechanical integration of the pressure and shear field via 
instrumented rigid walls that make up the control surface 
(Lentink 2018). These recent analyses show how the net 
fluid force can be measured for freely locomoting animals 
and robots, but the measurement of the corresponding net 
fluid moment remains to be addressed.

Here we expand the control surface analysis and derive a 
new formulation for recovering the fluid moment acting about 
a body’s center of mass. We begin by deriving a general equa-
tion based on the conservation of angular momentum, and then 
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discuss when and how the formulation can often be simpli-
fied for different engineering and scientific applications. As 
an example, we illustrate how the formulation can be applied 
to recover the net fluid moment on a bird flying freely inside 
an aerodynamic force platform, but this example can be gen-
eralized to any similarly challenging application of interest in 
science or engineering.

2 � Control surface formulation

To analyze fluid moments, we begin by deriving a control 
volume equation for angular momentum from the general 
Reynolds transport theorem. We describe the key derivation 
steps in this section and provide a more detailed derivation in 
the “Appendix”. For an extensive property � and intensive 
property � of a control mass CM (Vincenti 1982; Sonin 2001):

where dm is an infinitesimal mass element, CV is the 
control volume, dV  is an infinitesimal control volume 
element, �V  is the deformable surface of the control vol-
ume, and dS is an infinitesimal control surface element. 
Additionally, t is time, � is fluid density, � is fluid veloc-
ity, and � is the normal vector of the control surface. We 
can then select the angular momentum � about the ori-
gin O of the control surface as the extensive property, 
� = � = ∫

CM
� × �dm = ∫

CM
(� × �)�dV  , where � is the 

vector connecting the inertial reference point O to the 
mass element dm . The control volume equation for angular 
momentum is then:

The right-hand side represents external moments result-
ing from surface forces (pressure p and shear � ) and body 
forces � acting on the control mass ( �CM ). In other words, 
the change in the angular momentum of CM is made up of 
moments resulting from pressure �p , shear �

�
 , and body 

forces � f:

(1)

d

dt ∭CM

�dm =
∭CV

�

�t
��dV

+
∬

�V

��(� ⋅ �)dS =
[
d�

dt

]
CM

,

(2)
∭CV

�

�t
(� × �)�dV +

∬
�V

(� × �)�(� ⋅ �)dS =
(
d�

dt

)
CM

.

(3)

�CM =
(
d�

dt

)
CM

= 𝛴� ext = �p +�
𝜏
+� f

= −
∬

𝜕V

� × p�dS

+
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS +
∭CV

� × �dm.

In the most general sense, body forces could also include 
those due to electric or magnetic fields, but fluid locomo-
tion generally only deals with body forces resulting from 
gravity. We will, therefore, limit our consideration of body 
forces to gravity, � = � . Combining Eqs. (2) and (3) and 
using dm = �dV  , we now have:

We next simplify this expression by introducing the position 
of the control volume’s center of mass C relative to O, �C∕O 
(Fig. 1a). We note that while a spatial control volume does 
not have a center of mass, we can treat CV as a material 
volume by defining the control volume velocity to be equal 
to the material velocity at all times (Sonin 2001). As we 
will discuss in the next section, �C∕O depends on the posi-
tion of the body (or more specifically, where the volume 
displaced by the body is) within the CV and can, therefore, 
vary in time. The position vector from the origin O to a 
mass element dm located at point P can be expressed in 
terms of �C∕O as � = �P∕C + �C∕O (where �P∕C is the position 
vector from C to dm ). By the definition of a center of mass, 
�∭

CV
�P∕CdV = ∭

CV
�P∕Cdm = 0 . We can thus rewrite the 

final gravity term as �∭
CV

� × �dV = �∭
CV

(�P∕C + �C∕O)

×�dV = �∭
CV

�C∕O × �dV = �C∕O × ��V  , where V is the 
fluid volume in the CV. Assuming a constant density flow, 
Eq. (4) then becomes:

As detailed in the “Appendix”, we can reformulate the left-
hand side of Eq. (5) into terms that are more straightforward 
to evaluate:

(4)

∭CV

𝜕

𝜕t
(� × �)𝜌dV +

∬
𝜕V

(� × �)(� ⋅ �)𝜌dS

= −
∬

𝜕V

� × p�dS

+
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS +
∭CV

� × �𝜌dV .

(5)

(6)

�CV∕C + �C∕O × 𝜌
∬

𝜕V

�(� ⋅ �)dS

+ �C∕O ×

(
−
∬

𝜕V

p�dS +
∬

𝜕V

( ̄̄𝜏 ⋅ �)dS

−𝜌
∬

𝜕V

�((� − �) ⋅ �)

)
dS

= −
∬

𝜕V

� × p�dS +
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × �𝜌V ,
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where �CV∕C is the moment of CV about its center of mass 
C, �C∕O is the velocity of C relative to O, and � is the veloc-
ity of the control surface.

Next, to isolate fluid moments acting on the body from 
the rest of the control mass, we follow Lentink (2018) 
and consider the continuous control surface �V  in terms 
of the outer control surface CS, the inner control surface 
that encloses the deforming body �B , and a infinitesimally 
thin tube that connects the body and outer surface �b , i.e. 
control surface ( �V  ) = outer surface (CS) + tube ( �b ) + 
body surface ( �B ) (Fig. 1a). Moments on opposite sides 
of the infinitesimal tube �b are equal and opposite and, 
therefore, cancel out (so all �b integrals go to zero). Addi-
tionally, the convective term vanishes on the body surface 
due to the no-flow boundary condition, so the expanded 
form of Eq. (6) becomes:

(7)

�CV∕C + �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

+ �C∕O ×

(
−
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

− 𝜌
∬CS

�((� − �) ⋅ �)dS

−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

)

= −
∬CS

� × p�dS +
∬CS

� × ( ̄̄𝜏 ⋅ �)dS

−
∬

𝜕B

� × p�dS +
∬

𝜕B

� × ( ̄̄𝜏 ⋅ �)dS

�����������������������������������������������������

net pressure and shear torque from body

+�C∕O × �𝜌V .

Fig. 1   Control surface diagrams for the fluid moment acting on an 
arbitrary deforming body. a To derive the control surface formulation 
for the net fluid moment on the body, we define a control volume CV 
and control surface �V  made up of the outer control surface CS, the 
inner control surface around the deforming body �B , and an infinitesi-
mal tube �b that connects the two, �V = CS ∪ �B ∪ �b , with normal 
vector � . We define � as the position vector from the origin O to mass 
element dm or a surface element dS , and rC∕O is the position vector 
from O to C, the center of mass of the material control volume that 
coincides with CV. rP∕C is the position vector from C to dm . b The 
net fluid moment on the body about its center of mass B can be cal-
culated as MB = M

O − r
B∕O × �B (Mitiguy 2015). MO is the moment 

on the body about the origin, rB∕O is the position vector of the body’s 
center of mass relative to the origin, and FB is the the net force on 
the body, which includes net fluid and gravitational forces (Eq. 10). 
Typical control surface cross sections are shown for c particle image 
velocimetry and d an aerodynamic force platform (AFP). Surface 
pressure p (purple), shear ̄̄𝜏 (light blue), and velocity distributions u 
are shown on the outer control surfaces (but as in Lentink (2018) not 
on �B and �b to avoid clutter). The AFP imposes the no-flow bound-
ary condition u(t) = 0 on CS via instrumented walls that measure the 
integrated pressure and shear forces on each wall, F

AFP
 . Diagrams 

modified from Lentink (2018)
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Using this new formulation, we can now derive the total 
moment acting on the body. The moment caused by pres-
sure and shear on the surface cutout around the body ( �B ) 
represents the net moment from the body on the fluid. 
The moment on the body from the fluid will, therefore, be 
equal and opposite. To find the total external moment on 
the body with respect to the origin, �O , we must also add 
in the moment caused by gravity. For a body with mass m 
and center of mass position �B∕O with respect to the origin 
(Fig. 1b),

We can solve for �O using Eq. (7) (see “Appendix” for 
details) to find:

To further simplify this equation, we replace the body 
surface pressure and shear integrals by the net force 
that they have on the fluid in the CV, which is equal 
and opposite to the net fluid force acting on the body, 
� = −

(
−∬

𝜕B
p�dS + ∬

𝜕B
( ̄̄𝜏 ⋅ �)dS

)
:

�O = −

(
−
∬

𝜕B

� × p�dS +
∬

𝜕B

� × ( ̄̄𝜏 ⋅ �)dS

)

+ �B∕O × m�.

�O = −�CV∕C − �C∕O

× 𝜌

�
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

�

−
∬CS

(� − �C∕O) × p�dS

+
∬CS

(� − �C∕O) × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × 𝜌
∬CS

�((� − �) ⋅ �)dS

− �C∕O ×

⎛⎜⎜⎜⎜⎜⎝

−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

���������������������������������������

Net pressure and shear force from body

⎞⎟⎟⎟⎟⎟⎠
+ �C∕O × �𝜌V + �B∕O × m�.

(8)

�O = −�CV∕C − �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

−
∬CS

(� − �C∕O) × p�dS

+
∬CS

(� − �C∕O) × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × 𝜌
∬CS

�((� − �) ⋅ �)dS

+ �C∕O × � + �C∕O × �𝜌V + �B∕O × m�,

where the net fluid force on the body � is given by (Lentink 
2018):

A formulation for the moment on a body about its center 
of mass B, rather than about a theoretical origin, would be 
more physically meaningful and useful for interpreting the 
body’s rotational dynamics and stability. We, therefore, take 
one final step to apply the shift theorem for the moment of 
a set of forces (Mitiguy 2015), which enables us to find the 
moment on the body about B based on the moment on the 
body about the origin �O , the position of the body’s center 
of mass relative to the origin �B∕O , and the net force on the 
body �B , which includes the net fluid and gravitational 
forces on the body (Fig. 1b):

From Eqs. (8) and (10), we arrive at the general expression 
for the moment on the body with respect to its center of 
mass (Fig. 1c):

3 � Results and discussion

We now examine when the fluid moment formulation 
(Eq. 11) can be simplified depending on the application 
and choice of control volume CV. We again define the cor-
responding control surface �V  to be made up of the outer 
control surface CS, the inner control surface around the 
deforming body �B , and the infinitesimal tube that connects 
the two �b (Fig. 1a).

3.1 � Non‑rotating control volume

The first term in Eq. (11), the moment of the control vol-
ume CV about its center of mass �CV∕C , can be expressed 

(9)

� = −
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

− 𝜌
∬CS

�((� − �) ⋅ �)

− 𝜌
d

dt ∬
𝜕B

�(� ⋅ �)dS

�����������������������

unsteady body force, ���

−𝜌
d

dt ∬CS

�(� ⋅ �)dS.

(10)�B = �O − �B∕O × �B = �O − �B∕O × (� + m�)

(11)
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(Mitiguy 2015) in terms of the CV’s inertia tensor ̄̄�CV∕C , 
angular acceleration ���CV , angular velocity ���CV , and angular 
momentum �CV∕C about its center of mass C:

We assume in the following analysis that the CV is non-
rotating, ���CV = � and ���CV = � , so �CV∕C = � . If the CV 
does rotate, then this term will need to be measured or 
derived.

3.2 � Constant body volume and control volume

Before evaluating the remaining terms in Eq. (11), we will 
first re-express the position �C∕O and velocity �C∕O of the 
CV’s center of mass in terms of the body’s kinematics ( �B∕O , 
�B∕O ), which are much more straightforward to measure in 
practice. To do so, we begin by considering a control volume 
of the same size with no body inside, which will have a fluid 
mass mVo

 equal to the sum of the fluid mass displaced by the 
body mB and the current CV’s mass mV , mVo

= mB + mV . 
We can then relate the position of the center of mass of the 
control volume with no body inside, �Co , to the positions of 
B and C as

For a homogeneous fluid, �Co will correspond to the geo-
metric center of the control volume. Assuming incompress-
ible flow and neglecting small differences that would result 
from pressure or temperature variations in the fluid, we can 
express the masses in Eq. (12) in terms of the fluid density 
and their corresponding volumes:

where Vo is the CV’s volume without the body present, 
VB is the volume of the fluid displaced by the body, and V 
is the volume of the actual CV with the body present (so 
V = Vo − VB ). Rearranging, we now have:

If we additionally assume that the volume of the body and 
CV remain constant,

where �Co∕O is the velocity of the CV’s center of mass (rela-
tive to the origin O) without the body present. A constant 
body volume is generally a safe assumption for most fluid 

�CV∕C = ̄̄�CV∕C ⋅ 𝛼𝛼𝛼
CV +𝜔𝜔𝜔

CV ×�CV∕C.

(12)�ComVo
= �B∕OmB + �C∕OmV .

�Co�Vo = �B∕O�VB + �C∕O�V ,

(13)
�C∕O =

�Co�Vo − �B∕O�VB

�Vo − �VB

=
�CoVo − �B∕OVB

Vo − VB

=
Vo

V
�Co −

VB

V
�B∕O.

(14)�C∕O =
Vo

V
�Co∕O −

VB

V
�B∕O,

experiments, but we will consider the case when VB is vari-
able in Sect. 3.7. Next, if the outer control surface CS is 
constant, or only deforms in such a way that �Co remains 
constant (or as long as �Co∕O ≈ � at all times), then Eqs. (13) 
and (14) simplify further to

and

Substituting Eqs. (15) and (16) into the full equation (Eq. 11) 
and setting �CV∕C = � (from Sect. 3.1), the moment on the 
body with respect to its center of mass can now be written 
as:

We are now ready to evaluate when the first term in Eq. 
(17), VB

V
�B∕O × �

(
∬

CS
�(� ⋅ �)dS + ∬

�B
�(� ⋅ �)dS

)
 , can be 

neglected. We first apply Gauss’s Theorem to reformulate 
the term as

where �̄ =
1

V
∭

CV
�dV is the volume-averaged flow velocity 

in the CV. To evaluate when it is safe to neglect this term, we 
compare its magnitude to a reference moment—the product 
of a characteristic length scale of the body lB (such as the 
distance between the center of pressure of a force generating 
surface, such as a wing, from the body’s center of mass) and 
the weight of the body. We now denote the density of the 
fluid as �f and the density of the body as �B ∶

(15)�C∕O =
Vo

V
�Co −

VB

V
�B∕O,

(16)�C∕O = −
VB

V
�B∕O.

(17)

�B =
VB

V
�B∕O × 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

−
∬CS

(
� −

Vo

V
�Co +

VB

V
�B∕O

)
× p�dS

+
∬CS

(
� −

Vo

V
�Co +

VB

V
�B∕O

)
× ( ̄̄𝜏 ⋅ �)dS

+

(
Vo

V
�Co −

VB

V
�B∕O

)
× 𝜌

∬CS

�((� − �) ⋅ �)dS

+

(
Vo

V
�Co −

(
1 +

VB

V

)
�B∕O

)

× � +

(
Vo

V
�Co −

VB

V
�B∕O

)
× �𝜌V .

VB

V
�B∕O × 𝜌

∭CV

�dV

=
VB

V
�B∕O × 𝜌V�̄ = 𝜌VB�

B∕O × �̄,

𝜖u =
𝜌fVB�

B∕O × �̄

lB𝜌BVB�
=

𝜌f�
B∕O × �̄

lB𝜌B�
.
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The first term in Eq. (17) can thus be neglected when the 
ratio �u = 0 or 𝜖u ≪ 1 . For example, if the velocity of the 
body is zero (such as a model mounted on a sting), then 
�B∕O = 0 so �u = 0 . Similarly, in still fluid experiments, as 
in aerodynamic force platform and many partical image 
velocimetry studies, �̄ ≈ 0 so �u ≈ 0 , provided that the vol-
ume is large enough to not be dominated by the body’s wake. 
The third case where �u will be small is when the body and 
fluid velocities are closely aligned ( �B∕O × �̄ ≈ 0 ), as is the 
case for forward motion in a wind tunnel or flow channel 
(again assuming that the volume is large enough that it con-
tains more undisturbed freestream volume than disturbed/ 
wake flow volume). In general, if O(�B∕O × �̄) ≤ O(lB�) , then 
O(�u) ≤ O

(
�f

�b

)
 , so this term can also be neglected when the 

density of the fluid is much less than that of the body 
𝜌f ≪ 𝜌b . For instance, many animals have densities similar 
to water O(1000 kg m −3) , so when the fluid is air, �f

�b

≈ 0.001

.

3.3 � Small body to control volume ratio

It is generally possible in fluid experiments to define a CV 
with a much larger volume V than the flow volume taken up 
by the body and its wake VB 

(
VB

V
≪ 1

)
 . This means that 

V = Vo − VB ≈ Vo  a n d  f r o m  E q .   ( 1 5 ) , 
�C∕O =

Vo

V
�Co −

VB

V
�B∕O ≈ �Co . If �u ≈ 0 based on the condi-

tions descr ibed in the previous section, then 
VB

V
�B∕O × �

(
∬

CS
�(� ⋅ �)dS + ∬

�B
�(� ⋅ �)dS

)
≈ 0 , and the 

expression for the moment on the body (Eq. 17) simplifies 
to:

3.4 � Unsteady body moment

In the second-to-last term in Eq.  (11), the fluid force 
F includes an unsteady body force term (see Eq.  9), 
��� = �

d

dt
∬

�B
�(� ⋅ �)dS= �

d

dt
∭

B
�dV  , which describes 

the inertial force associated with the fluid displaced by 
the body volume B (Lentink 2018). As detailed in Lentink 
(2018), the ��� can often be neglected, such as when the 
fluid-body density ratio is small. Here we add an additional 
case when it can be neglected in deriving �B . From Eq. (11), 
we see that the UBF does not contribute significantly to the 
moment on the body if (�C∕O − �B∕O) × ��� = �C∕B × ��� 

(18)

�B = −
∬CS

(� − �Co ) × p�dS

+
∬CS

(� − �Co ) × ( ̄̄𝜏 ⋅ �)dS

+ �Co × 𝜌
∬CS

�((� − �) ⋅ �)dS

+ (�Co − �B∕O) × � + �Co × �𝜌V .

is small. To see when this is the case, we can first write the 
moment resulting from the unsteady body force as:

 where �̄B =
1

V

d

dt
∭

B
udV  is the volume-averaged accelera-

tion of the displaced fluid. We can then compare this term 
with the reference moment first introduced in Sect. 3.2,

Thus if the average body acceleration is aligned with a line 
connecting the body’s center of mass and the control vol-
ume’s center of mass (i.e. �C∕B × �̄B = 0 ), then the UBF can 
be neglected without loss of accuracy. The fluid force in 
Eq. (11) can then be simplified to:

3.5 � Stationary outer control surface

For experiments in which the outer boundary is formed by 
stationary solid walls, as is the case for the aerodynamic force 
platform, � = � at the outer control surface CS (Fig. 1d). Equa-
tion (18) then becomes:

The final gravity term represents the net force on the control 
volume due to its submersion in fluid (e.g. air or water) that 
is partially displaced by the body inside. If measurements 
are initially tared while the body and the fluid are at rest, this 
gravity term, which is the only time-independent term, will 
drop out. Then, writing � − �Co more concisely as �P∕Co , and 
�Co − �B∕O as �Co∕B , the moment on the body about its center 
of mass becomes:

where the fluid force on the body F (from Eq. 9) similarly 
simplifies to � = −∬

CS
p�dS + ∬

CS
( ̄̄𝜏 ⋅ �)dS − ��� , or if 

�C∕B × ��� = �C∕B × 𝜌
d

dt ∭B

�dV = �C∕B × 𝜌VB�̄B,

𝜖��� =
�C∕B × 𝜌fVB�̄B

lB𝜌BVB�
=

�C∕B × 𝜌f�̄B

lB𝜌B�
.

(19)
� = −

∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

− 𝜌
∬CS

�((� − �) ⋅ �) − 𝜌
d

dt ∬CS

�(� ⋅ �)dS.

�B = −
∬CS

(� − �Co ) × p�dS

+
∬CS

(� − �Co ) × ( ̄̄𝜏 ⋅ �)dS

+ (�Co − �B∕O) × � + �Co × �𝜌V .

(20)
�B = −

∬CS

�P∕Co × p�dS

+
∬CS

�P∕Co × ( ̄̄𝜏 ⋅ �)dS + �Co∕B × �,
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the unsteady body force can be neglected (as discussed in 
the previous section),

Together, Eqs. (20) and (21) are the most simplified and 
yet still widely applicable versions of the full fluid moment 
and fluid force equations (Eqs. 9 and 11). We next consider 
the implications of two less commonly encountered condi-
tions—the presence of a liquid–gas interface, and the case 
of a variable body volume.

3.6 � Liquid–gas interface

The equations and analysis in the previous sections also hold 
for bodies traveling at a liquid–gas interface, where most of 
the body is surrounded by gas and only a small segment by 
liquid. Following Lentink (2018), we consider the control 
surface �V  in terms of the free surface (with liquid on one 
side and gas on the other) FS, the body surface in contact 

(21)� = −
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS.

with the water �Bw , the body surface in contact with the air 
�Ba , and the remaining outer control surface that encloses the 
control volume CS. However, the control surface integrals cor-
responding to FS and �Ba do not contribute significantly to 
the net moment acting on the body. As described in Lentink 
(2018), stresses on the gas side of the interface do not con-
tribute to the net force or moment on the body, because stress 
in the gas is constant and equal to −p0 ̄̄� everywhere around 
the control surface (where ̄̄� is the identity tensor), and shear 
stress is negligible. For the moment analysis, this gives: 
−∬

FS
� × (p ⋅ �)dS + ∬

FS
� × ( ̄̄� ⋅ �)dS = 0 . There is no flow 

through the free surface, so −�∬
FS
� × [(� − �) ⋅ �]dS = 0.

While there is surface tension acting on the body at the liq-
uid–gas interface between �Bw and �Ba , it is negligible at large 
Weber and Bond numbers, wherein fluid inertia and buoyancy 

forces dominate (Bush and Hu 2006; Lentink 2018). At small 
Weber and Bond numbers, surface tension becomes important 
and necessitates the calculation of surface curvature. However, 
the contribution of surface tension to �B will remain small if 
the force is oriented mostly towards the body’s center of mass.

The center of mass of the control volume will be deter-
mined primarily by the liquid volume, so only the submerged 
volume of the body Vs will have appreciable effects on �C∕O 
and �C∕O . This means that the requirement that VB

V
≪ 1 used to 

simplify the moment equation in Sect. 3.3 can be modified to 
Vs

V
≪ 1 , so the simplified formulation can still hold for larger 

bodies (or smaller control volumes) as long as the submerged 
portion of the body is small in comparison.

3.7 � Variable body volume

In the majority of this section, we assumed that body volume 
remains constant, but we now consider the case where the 
body volume is not constant. Taking the time derivative of 
�C∕O from Eq. (13), the velocity of the fluid center of mass 
becomes:

or using V = Vo − VB,

From Eq. (11), the moment contribution related to �C∕O 
depends on its cross product with �∭

CV
�dV , so the moment 

contribution from changes in the body volume V̇B will equal:

Comparing to the reference moment lB�BVB�,

�C∕O =
d

dt

(
�CoVo − �B∕OVB

Vo − VB

)

=
(Vo − VB)(−�

B∕OV̇B − �B∕OVB) − (�CoVo − �B∕OVB)(−V̇B)

(Vo − VB)
2

=
−�B∕OVoV̇B − �B∕OVoVB + �B∕OVBV̇B + �B∕OV2

B
+ �CoVoV̇B − �B∕OVBV̇B

(Vo − VB)
2

=
−�B∕OVoV̇B − �B∕OVoVB + �B∕OV2

B
+ �CoVoV̇B

(Vo − VB)
2

=
−�B∕OVB(Vo − VB) + VoV̇B(�

Co − �B∕O)

(Vo − VB)
2

= −
VB

(Vo − VB)
�B∕O +

VoV̇B

(Vo − VB)
2
�Co∕B,

�C∕O = −
VB

V
�B∕O +

VoV̇B

V2
�Co∕B.

VoV̇B

V2
�Co∕B × 𝜌

∭CV

�dV =
VoV̇B

V2
�Co∕B × 𝜌V�̄

= 𝜌
VoV̇B

V
�Co∕B × �̄.
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The relative error from neglecting changes in body volume, 
𝜖V̇B

 , thus depends on the product of four ratios. Since 
Vo = V + VB , the first ratio Vo

V
> 1 , but as long as VB is small (

VB

V
≤ O(1)

)
 , then Vo

V
∼ O(1) . Thus if any one of the remain-

ing three ratios is near zero ( ≪ 1 ) while the product of the 
other two are ≤ O(1) , then body volume changes can be 
neglected. For instance, if O

(
Vo

V

V̇B

VB

�Co∕B×�̄

lB�

)
≤ 1 , then 

O(𝜖V̇B
) ≤ O(

𝜌f

𝜌B

) , so variable body volume can often be 
neglected when the fluid-body density ratio is small, as is 
commonly the case when the fluid is air (as discussed in Sec. 
3.2). Similarly, 𝜖V̇B

 will generally be small if the time rate of 
change of the body volume is small relative to the body 
volume itself, O

(
V̇B

VB

)
≪ 1 , or if the volume-averaged fluid 

velocity is zero or closely aligned with �Co∕B , 
O(�Co∕B × �̄) ≪ 1 . If, however, VoV̇B

V2
�Co∕B × 𝜌∭

CV
�dV  is 

large, then body volume changes will need to be 
quantified.

3.8 � Summary table of simplifying conditions 
for fluid moment and force formulations

In the following table, we summarize the various conditions 
described in this section and their implications on the full 
fluid moment (Eq. 11) and fluid force (Eq. 9) formulations, 
which we repeat here for reference:

𝜖V̇B
=

𝜌fVoV̇B�
Co∕B × �̄

VlB𝜌BVB�
=

Vo

V

𝜌f

𝜌B

V̇B

VB

�Co∕B × �̄

lB�
.

�B = −�CV∕C

���

(A)

−�C∕O × 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

���������������������������������������������������������������������

(B)

−
∬CS

(� − �C∕O) × p�dS +
∬CS

(� − �C∕O) × ( ̄̄𝜏 ⋅ �)dS

���������������������������������������������������������������������������������

(C)

+ �C∕O × 𝜌
∬CS

�((� − �) ⋅ �)dS

�������������������������������������������

(D)

+ (�C∕O − �B∕O) × �
���������������������

(E)

+ �C∕O × �𝜌V
�����������

(F)

.

� = −
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

���������������������������������������

(G)

− 𝜌
d

dt ∬
𝜕B

�(� ⋅ �)dS

�����������������������

(H)

− 𝜌
∬CS

�((� − �) ⋅ �) − 𝜌
d

dt ∬CS

�(� ⋅ �)dS

���������������������������������������������������������������

(I)

.

4 � Aerodynamic force platform formulations

We now show more explicitly how the instantaneous net forces 
and moments �B on a moving, deformable body can be directly 
calculated using measurements from an aerodynamic force plat-
form (AFP). We then show an example of the resulting fluid 
moment generated by a bird’s wingbeat in the center of an AFP.

The AFP uses solid instrumented plates to mechanically 
integrate pressure and shear acting on the top, bottom, front, 
rear, and side walls of a control volume (Fig. 2). Taking into 
account these stationary walls that form the outer control 
surface CS and taring the gravity term out when the body 
and fluid are both at rest, we can start from Eq. (20):

where again �P∕Co is the position of a surface element dS 
from the position of the CV’s center of mass without the 
body present Co , and �Co∕B is the position of Co relative to the 
center of mass of the body B. For all flying bodies heavier 
than air, the fluid force is given by Eq. 21 (Lentink 2018):

so the formulation for the moment about the body becomes 
(Fig. 1c):

�B(t) = −
∬CS

�P∕Co (t) × p(t)�dS

+
∬CS

�P∕Co (t) × ( ̄̄𝜏(t) ⋅ �)dS + �Co∕B(t) × �(t),

�(t) = −
∬CS

p(t)�dS +
∬CS

( ̄̄𝜏(t) ⋅ �)dS,

(22)

�B(t) = −
∬CS

�P∕Co × p�dS

+
∬CS

�P∕Co × ( ̄̄𝜏 ⋅ �)dS + �Co∕B

×

(
−
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

)

= −
∬CS

�P∕Co × p�dS

+
∬CS

�P∕Co × ( ̄̄𝜏 ⋅ �)dS

−
∬CS

�Co∕B × p�dS

+
∬CS

�Co∕B × ( ̄̄𝜏 ⋅ �)dS

= −
∬CS

(�P∕Co + �Co∕B) × p�dS

+
∬CS

(�P∕Co + �Co∕B) × ( ̄̄𝜏 ⋅ �)dS

= −
∬CS

�P∕B(t) × p(t)�dS

+
∬CS

�P∕B(t) × ( ̄̄𝜏(t) ⋅ �)dS.
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We expect that any error from using this simplified formula-
tion in place of the full equations (Eqs. 9 and 11) should be 
less than 1%, because the neglected terms are either effec-
tively zero (in the theoretical limit) or are on the same order 
as the small fluid-body density ratio 

(
�f

�b

≈ 0.001
)
.

Before we can evaluate these integrals using measure-
ments from the AFP, we must first expand them for each 
surface of the AFP, e.g. the top plate (TP), bottom plate 
(BP), front plate (FP), rear plate (RP), left wall (LW), and 
right wall (RW):

I f  we express  the  moment  cont r ibut ion  of 
each plate to the total  moment about  B  as 
�Plate∕B(t) = −∬

Plate
�P∕B × p�dS + ∬

Plate
�P∕B × ( ̄̄𝜏 ⋅ �)dS  , 

then we are left with:

To calculate the moment contribution of each plate in terms 
of the measured forces on the plate, we apply the shift theo-
rem (Mitiguy 2015) to write:

where �Plate∕Q is the moment of the plate about a point Q 
(which we will choose to be the zero moment point on the 
plate, as detailed below), �Q∕B is the position vector from 
B to Q, and �Plate is the net fluid force acting on the plate, 
�Plate = −∬

Plate
p�dS + ∬

Plate
( ̄̄𝜏 ⋅ �)dS  . The AFP force 

plates are each instrumented by three force/torque sen-
sors, which enables us to recover the net force �Plate and 
where the center of force acts on each plate (i.e. the position 
of the zero moment point Q). By defining Q as the zero-
moment point, �Plate∕Q = 0 , we have all the needed infor-
mation to find the moment contribution from each plate, 
�Plate∕B = �Q∕B × �Plate = (�Q∕O − �B∕O) × �Plate.

�B(t)

= −
∬CS

�P∕B × p�dS +
∬CS

�P∕B × ( ̄̄𝜏 ⋅ �)dS

= −
∬TP

�P∕B × p�dS +
∬TP

�P∕B × ( ̄̄𝜏 ⋅ �)dS

−
∬BP

�P∕B × p�dS +
∬BP

�P∕B × ( ̄̄𝜏 ⋅ �)dS

−
∬FP

�P∕B × p�dS +
∬FP

�P∕B × ( ̄̄𝜏 ⋅ �)dS

−
∬RP

�P∕B × p�dS +
∬RP

�P∕B × ( ̄̄𝜏 ⋅ �)dS

−
∬LW

�P∕B × p�dS +
∬LW

�P∕B × ( ̄̄𝜏 ⋅ �)dS

−
∬RW

�P∕B × p�dS +
∬RW

�P∕B × ( ̄̄𝜏 ⋅ �)dS.

(23)
�B(t) =�TP∕B(t) +�BP∕B(t) +�FP∕B(t)

+�RP∕B(t) +�LW∕B(t) +�RW∕B(t).

�Plate∕B = �Plate∕Q + �Q∕B × �Plate,

We denote the position vectors from the origin of the 
AFP to these zero-moment points ( �QPlate∕O ) on the top, 
bottom, front, rear, left, and right plates as �TP , �BP , �FP , 
�RP , �LW , �RW (respectively), and the net fluid force on 
each plate as �TP , �BP , �FP , �RP , �LW , �RW (Fig. 2) to write 
Eq. (23) as:

We next show how to derive �TP , �BP , �FP , �RP , �LW , 
�RW based on the forces �1 , �2 , �3 and torques �1 , �2 , �3 
measured by the three sensors that support each plate. We 
start with a force and moment balance for a single plate:

where �1 , �2 , �3 are the sensor positions relative to the AFP 
origin. Separating out the x, y, z components, we can express 
Eq.  (25) as three separate scalar equations, with 
�Q∕O =< xQ, yQ, zQ > , the components of the net force on the 
plate �Plate =

⟨
FP
x
,FP

y
,FP

z

⟩
 , and the sensor positions 

�s = ⟨xs, ys, zs⟩ , forces �s =
⟨
Fx,s,Fy,s,Fz,s

⟩
 , and torques 

�s =
⟨
Tx,s, Ty,s, Tz,s

⟩
 with s = 1, 2, 3:

where FP
x
= −(Fx,1 + Fx,2 + Fx,3) , FP

y
= −(Fy,1 + Fy,2 + Fy,3) , 

and FP
z
= −(Fz,1 + Fz,2 + Fz,3) . These equations can be used 

to derive the zero-moment points on any instrumented sur-
face of the AFP. Since the forces and torques are measured, 
we then have three equations for each plate to solve for the 

(24)

�B(t) = (�TP − �B∕O) × �TP + (�BP − �B∕O) × �BP

+ (�FP − �B∕O) × �FP + (�RP − �B∕O) × �RP

+ (�LW − �B∕O) × �LW + (�RW − �B∕O) × �RW.

(25)

�� = �Plate + �1 + �2 + �3 = 0

�Plate = −(�1 + �2 + �3).

��Plate∕Q = (�1 − �Q∕O) × �1

+ (�2 − �Q∕O) × �2

+ (�3 − �Q∕O) × �3

+ �1 + �2 + �3 = 0

�1 × �1 + �2 × �2 + �3 × �3

+ �1 + �2 + �3

= �Q∕O × (�1 + �2 + �3)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

−�Plate

,

(26)
x-component:�3

s=1
(ysFz,s − zsFy,s + Tx,s) = −yQF

P
z
+ zQF

P
y

(27)
y-component:�3

s=1
(zsFx,s − xsFz,s + Ty,s) = −zQF

P
x
+ xQF

P
z

(28)
z-component:�3

s=1
(xsFy,s − ysFx,s + Tz,s) = −xQF

P
y
+ yQF

P
x
,
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coordinates of QPlate ( xQ, yQ, zQ ). We note that because the 
fluid force must act against the surface of the plate, one of 
these coordinates is already known for each plate based on 
the design of the AFP ( zQ is fixed for the top plate and bot-
tom plate and has known dimensions in meters, and simi-
larly xQ is known for the rear plate and front plate, and yQ is 
known for the side plates). As a result, only two of the equa-
tions are actually necessary to solve for �Q for each plate. For 
example, solving these equations for the zero-moment point 
on the top plate �TP (Fig. 2), we get from Eq. (26),

and from Eq. (27),

We can similarly calculate these position vectors for the 
other five plates, �TP , �FP , �RP , �LW , and �RW . Equation (22) 

yQ =
�

3
s=1

(ysFz,s − zsFy,s + Tx,s) − zQF
P
y

−FP
z

,

xQ =
�

3
s=1

(zsFx,s − xsFz,s + Ty,s) + zQF
P
x

FP
z

.

can then be used to calculate the net fluid moment on a body 
about its center of mass. Therefore, by measuring the forces 
that act on the AFP plates, we are able to calculate the net 
instantaneous force and moment that a deforming body gen-
erates as it moves freely inside of the AFP. These equations 
also apply to applications in other fluids such as water.

Finally, we demonstrate the result of applying these for-
mulations for the wingbeat of a Pacific parrotlet flying near 
the center of a 2D aerodynamic force platform (Fig. 3). We 
have previously shown experimental results for fluid forces 
measured by 1D aerodynamic force platforms that meas-
ure vertical forces (Lentink et al. 2015; Chin and Lentink 
2017; Ingersoll and Lentink 2018; Ingersoll et al. 2018). 
The 2D AFP includes instrumented top, bottom, front, and 
rear plates for measuring both net vertical and horizontal 
forces (additional details on this setup will be published else-
where). We trained five Pacific parrotlets (Forpus coelestis; 
30.7 ± 2.6 g, 20 Hz wingbeat frequency, 22.0 ± 1.5 cm 
mid-downstroke wingspan) to fly between two perches in the 
AFP using habituation and positive reinforcement (food and 
water provided ad libitum; cages have enrichment, animals 

Table 1   Summary of simplifications that can be made to the full formulations for fluid force and fluid moment acting on a body submerged in 
fluid or between two fluid interfaces

The simplest moment and force formulations result when the conditions in Sects. 3.1–3.5 (which are listed in the “conditions” column above) all 
apply. These formulations are relevant for a wide range of applications, including particle image velocimetry (PIV) or aerodynamic/ hydrody-
namic force platform (AFP) studies of vehicles (ve), animals (an), and objects (ob)

Sec. Conditions Implications Typical applications

3.1 Non-rotating control volume ( ���CV = 0 , ���CV = 0) Term (A) = 0 ve, an, ob PIV, AFP

3.2 Constant control volume V and constant body volume 
V
B

 with: body velocity ≈ 0 , or fluid velocity ≈ 0 , 
or the body and fluid velocities are closely aligned, 
or the average body density is much larger than the 

average fluid density 

(
𝜖
u
=

𝜌
f
�B∕O×�̄

𝜌BlB�
≪ 1

)

Term (B) = 0 ve, an, ob PIV, AFP

3.3 Small body to control volume ratio ( V
B
∕V ≪ 1) If conditions 3.1–3.3 are true, then Terms (A) and (B) = 0, and the position of the 

CV’s center of mass �C∕O can be approximated by �Co , its position when no body 
is present (Eq. 11 simplifies to Eq. 18)

ve, an, ob PIV, AFP

3.4 The unsteady body force (the force associated with 
the acceleration of the fluid volume displaced by 
the body) is negligible, as is the case when the aver-
age body density is much larger than the average 
fluid density. Alternatively, the body accelerates 
towards or away from the CV’s center of mass. (
𝜖��� =

𝜌
f
�C∕B×�̄B

𝜌BlB�
≪ 1

)

Term (H) = 0 (Eq. 9 simplifies to Eq. 19) ve, an, ob PIV, AFP

3.5 The outer control surface CS is solid and stationary 
( � = � at CS)

Terms (D) and (I) = 0. If initially tared, term (F) = 0, and if conditions 3.1–3.5 
all apply, then only Terms (C), (E), and (G) remain (Eqs. 9 and 11 simplify to 
Eqs. 20 and 21)

ve, an, ob AFP

3.6 Liquid–gas interface The submerged body volume V
s
 replaces V

B
 for condition 3.3. Surface tension can 

be neglected for large Weber and Bond numbers, or if force is oriented mostly 
towards the body’s center of mass

ve, an AFP

3.7 Variable body volume Condition 3.2 can only be assumed for small fluid-body density ratios, or if the time 
rate of change of the body volume V̇

B
 is small relative to the body volume V

B
 , 

or the average fluid velocity is near zero ( ̄� ≈ 0 ), or the average fluid velocity is 
aligned with �Co

∕B , the vector connecting the CV’s center of mass to the body’s 

center of mass 

(
𝜖
V̇B

=
V
o

V

𝜌
f

𝜌B

V̇B

VB

�Co∕B×�̄

lB�
≪ 1

)

ve, an, ob PIV, AFP



	 Experiments in Fluids           (2020) 61:18 

1 3

   18   Page 12 of 19

were not sacrificed, all training and experimental procedures 
were approved by Stanford’s Administrative Panel on Labo-
ratory Animal Care). We recorded each flight with five DLT-
calibrated (Hedrick 2008) high-speed cameras, which were 
synchronized with each other and the AFP. To estimate the 
position of a bird’s center of gravity, we took a weighted 
average of the tracked coordinates of the bird’s left eye and 
most distal tip of the tail ( xcg = 0.5xeye + 0.5xtail , ycg = ytail , 
and zcg = 0.69zeye + 0.31ztail based on estimated mass distri-
butions from previous cadaver studies).

During these short (80 cm) flights, four of the parrotlets 
often briefly pause their wingbeat after completing their 
takeoff acceleration and before decelerating for landing. The 
downstroke that precedes this pause generates mostly vertical 
weight support (Fig. 3a) while horizontal forces remain rela-
tively low (Fig. 3b). This enables us to more intuitively under-
stand the resulting fluid moment acting about the bird’s center 
of gravity. The first half of the downstroke yields a positive 
(forward pitching) moment as net fluid forces push upwards 
on the wings, which are sweeping forward from behind the 
bird’s center of gravity. As the wings sweep in front of the 

bird’s center of gravity, the weight support that they generate 
yields a negative (backward pitching) moment. Because the 
bird’s body orientation remains mostly constant during the 
pause, we would expect the net fluid moment generated about 
the bird’s center of mass during the preceding downstroke 
to be near zero. Indeed, integrating the calculated moment 
(Fig. 3c), which we normalize by the bird’s bodyweight bw 
and mid-downstroke wing radius r, we find a net moment 
impulse during each downstroke of only 0.004 ± 0.028 bw-
r-s (N = 4 birds, n = 15 flights). These small fluid moments 
likely exhibit greater variance compared to the measured 
forces because they are particularly sensitive to setup noise 
and leakage effects. Based on the theory presented here, future 
PIV and AFP studies can build off our first results and further 
improve the experimental implementation.

5 � Conclusion

Control surface formulations can enable both direct and non-
intrusive measurement of the net fluid force and moment acting 
on a deforming body. Lentink (2018) previously showed how 
the Reynolds transport theorem for conservation of momentum 
can be used to accurately recover the 3D instantaneous forces 
generated by freely moving deformable bodies using control 

Fig. 2   The net moment on a deforming body (we show a bird as an 
example) can be recovered from instrumented plates that make up 
the top (TP), bottom (BP), front (FP), rear (RP), left (LW), and right 
(RW) walls of the outer control surface of an AFP. The side plates 
(LW, RW) are not shown for clarity but are otherwise identical. Each 
plate is instrumented by three 6-axis force/torque sensors (as shown 
for the top and front plates but not the rear, bottom, and side plates). 
The sensor forces and torques are used to calculate the net force on 
each plate ( FTP , FFP , FBP , FRP , FLW , FRW ), as well as the position of 
the center of force (the zero moment point, QPlate ) on each plate. Sen-
sor forces and locations are labeled on the top plate as Fx,s,Fy,s,Fz,s 
and (xs, ys, zs) , where s = 1, 2, 3 , and rTP is the position vector from 
the origin to the center of force on the top plate. We use the same 
notation for the sensor forces and locations on the other five plates in 
our formulations (we omit the labels here to improve figure clarity)

Fig. 3   The fluid moment generated during a bird’s downstroke can 
be derived from the fluid forces measured in an aerodynamic force 
platform. During a downstroke prior to a wingbeat pause, a bird gen-
erates a primarily weight support and b relatively little force in the 
forward direction. c By combining these force measurements with 
our fluid moment formulations, we find that the start of the down-
stroke yields a small positive moment which is largely canceled out 
by a small negative moment generated during the second half of the 
downstroke. Curves and shaded regions show mean ± SD for N = 4 
birds, n = 15 flights. Dashed vertical lines show average downstroke 
start and end times, and arrows on avatars indicate positive sign con-
ventions. Forces are normalized by bodyweight bw, and the moment 
about the bird’s center of gravity My is normalized by the bird’s body-
weight times its wing radius r
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surface integration. We have now demonstrated how this meth-
odology can be extended to recover the resulting 3D moments 
by applying the Reynolds transport theorem for conservation 
of angular momentum. In contrast to existing methods that can 
only be used for tethered or constrained locomotion, this meth-
odology applies to many more forms of locomotion studies, 
including that of freely moving vehicles, animals, and deform-
ing objects measured using particle image velocimetry and 
aerodynamic force platforms. For many of these PIV and AFP 
studies, the formulation for recovering fluid moments about a 
body’s center of mass can be greatly simplified (Table 1). In 
general, these fluid force and moment control surface formula-
tions provide the potential for researchers to gain a new under-
standing of how deforming bodies locomote in gas, liquid, or 
at the liquid–gas interface in science and engineering.
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Appendix

This Appendix provides the full details for deriving the full 
fluid moment equation (Eq. 11) beginning from Eq. (4) in 
Sect. 2 of the main text:

For completion, details included in Sect. 2 are repeated 
below. We begin by assuming a constant density flow to 
bring the fluid density � out of the integrals:

We next simplify this expression by introducing the posi-
tion of the control volume’s center of mass C relative to O, 
�C∕O (Fig. 1a). We note that while a spatial control volume 

∭CV

𝜕

𝜕t
(� × �)𝜌dV +

∬
𝜕V

(� × �)(� ⋅ �)𝜌dS

= −
∬

𝜕V

� × p�dS +
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS

+
∭CV

� × �𝜌dV .

(29)

𝜌
∭CV

𝜕

𝜕t
(� × �)dV + 𝜌

∬
𝜕V

(� × �)(� ⋅ �)dS

= −
∬

𝜕V

� × p�dS

+
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS + 𝜌
∭CV

� × �dV .

does not have a center of mass, we can treat CV as a mate-
rial volume by defining the control volume velocity to be 
equal to the material velocity at all times (Sonin 2001). As 
we discuss in Sect. 3, �C∕O depends on the position of the 
body (or more specifically, where the volume displaced 
by the body is) within the CV and can, therefore, vary in 
time. The position vector from the origin O to a mass ele-
ment dm located at point P can be expressed in terms of 
�C∕O as � = �P∕C + �C∕O (where �P∕C is the position vec-
tor from C to dm ). By the definition of a center of mass, 
�∭

CV
�P∕CdV = ∭

CV
�P∕Cdm = 0 . We can thus rewrite the 

final gravity term as �∭
CV

� × �dV = �∭
CV

(�P∕C + �C∕O)

×�dV = �∭
CV

�C∕O × �dV = �C∕O × ��V  , where V is the 
fluid volume in the CV. Equation (29) then becomes:

We first reformulate the left-hand side of Eq. (30) into 
terms that can be more easily evaluated, beginning with the 
unsteady volume integral. The cross product of a vector with 
itself is zero, so we start by writing the unsteady term as:

We then expand the integral by leveraging the position and 
velocity of the control volume’s center of mass, C. Just as 
the position vector of a fluid element at P could be expressed 
as � = �P∕C + �C∕O , the velocity of the fluid element can be 
written as � = �P∕C + �C∕O , where �P∕C is the fluid element’s 
velocity relative to C, and �C∕O is the velocity of C relative to O:

(30)

𝜌
∭CV

𝜕

𝜕t
(� × �)dV + 𝜌

∬
𝜕V

(� × �)(� ⋅ �)dS

= −
∬

𝜕V

� × p�dS

+
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS + �C∕O × �𝜌V .

�
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�

�t
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× � + � ×
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= �
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� × � + � ×
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dV

= �
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� ×
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�t
dV .

�
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� ×
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�t
dV
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(
�P∕C + �C∕O

)
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�

�t

(
�P∕C + �C∕O

)
dV

= �
∭CV

�P∕C ×
��P∕C

�t
+ �P∕C

×
��C∕O

�t
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(
��P∕C

�t
+

��C∕O

�t

)
dV
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�P∕C ×
��P∕C

�t
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×
��C∕O

�t
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�C∕O ×
��

�t
dV ,
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and bringing ��
C∕O

�t
 and �C∕O out of the integrals because they 

are the same for all fluid elements in the CV (they are spe-
cific only to C),

We can now again take advantage of the definition of center 
of mass ( �∭

CV
�P∕CdV = 0 ) to eliminate the second term. 

We can also rewrite the last partial time derivative in terms 
of a material time derivative and surface integral (see Eq. 1 
from Sect. 2 with CM = �CV ), which will enable us to com-
bine it with the convective term from Eq. (30):

We can now add in the convective term to complete our new 
expression for the left side of Eq. (30):

= �
∭CV

�P∕C ×
��P∕C

�t
dV + �

∭CV

�P∕CdV

×
��C∕O

�t
+ �C∕O × �

∭CV

��

�t
dV .

(31)

�
∭CV

�P∕C ×
��P∕C

�t
dV + 0 + �C∕O × �

∭CV

��

�t
dV

= �
∭CV

�P∕C ×
��P∕C

�t
dV

+ �C∕O × �

[
d

dt ∭CV

�dV −
∬

�V

�(� ⋅ �)dS

]

= �
∭CV

�P∕C ×
��P∕C

�t
dV

+ �C∕O × �
d

dt ∭CV

�dV − �C∕O × �
∬

�V

�(� ⋅ �)dS

= �
∭CV

�P∕C ×
��P∕C

�t
dV + �C∕O × �

d

dt ∭CV

�dV

− �
∬

�V

(�C∕O × �)(� ⋅ �)dS.

(32)

�
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+ �
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dt ∭CV
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∬
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(
(� − �C∕O) × �
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�t
dV + �C∕O

× �
d

dt ∭CV

�dV + �
∬

�V

(�P∕C × �)(� ⋅ �)dS.

Before we add in the right-hand side of Eq. (30), we will 
apply a few more reformulations to express the integral 
terms in Eq. (32) (i.e. the left-hand side of Eq. 30) more 
intuitively. Beginning with the first term, we apply the prod-
uct rule and the fact that the cross product of a vector with 
itself is zero:

We can also expand the third term in Eq. (32) into two sur-
face integrals (again using � = �P∕C + �C∕O ), which will 
enable us to regroup the terms in Eq. (32) with another mate-
rial time derivative:

We can now rewrite the terms from Eq. (32) as

or rearranging,

We see that the first two integrals are equal to the material 
time derivative, so Eq. (32) can be written as:

�
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The first time derivative in Eq. (33) (I) is the moment of CV 
about its center of mass C,

The second term (II) can be simplified if we leverage the 
definition of center of mass again. In order to do so, we first 
apply the Reynolds transport theorem (Eq. 29):

Then pulling the terms specific only to C 
(
�C∕O and

��C∕O

�t

)
 

out of the integrals,

we can now utilize the center of mass definition, 
�∭

CV
�P∕CdV = 0 , to eliminate the first and last terms, 

which leaves us with:

(33)
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Then since ��
P∕C

�t
= �P∕C = �P∕O − �C∕O , and again using the 

fact that the cross product of a vector with itself is zero, term 
II becomes:

Our ultimate goal is to develop a control surface formula-
tion, so we next convert the volume integral into a surface 
integral. For brevity, we temporarily switch to Einstein nota-
tion to show the steps involved in this transformation:

Applying Gauss’s theorem to the first term and using the fact 
that the divergence �uj

�xj
= 0 for incompressible flow to elimi-

nate the second term,

Term (II) thus becomes:

To express the third term (III) from Eq. (33) in terms of sur-
face integrals, we can apply the conservation of momentum:

where � is the velocity of the control surface.
We can now combine the simplified forms of (I)–(III) 

from Eqs. (34)–(36) with the right-hand side of Eq. (30) to 
form the full moment equation:
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Next, to isolate fluid moments acting on the body from the 
rest of the control mass, we follow Lentink (2018) and con-
sider the continuous control surface �V  in terms of the outer 
control surface CS, the inner control surface that encloses 
the deforming body �B , and a infinitesimally thin tube that 
connects the body and outer surface �b , i.e. control surface 
( �V  ) = outer surface (CS) + tube ( �b ) + body surface ( �B ) 
(Fig. 1a). We can, therefore, expand the control surface 
terms:

Moments on opposite sides of the infinitesimal tube �b are 
equal and opposite and, therefore, cancel out (so all �b inte-
grals go to zero), and the convective term vanishes on the 

(37)

�CV∕C + �C∕O × 𝜌
∬

𝜕V

�(� ⋅ �)dS

+ �C∕O ×

(
−
∬

𝜕V

p�dS +
∬

𝜕V

( ̄̄𝜏 ⋅ �)dS

−𝜌
∬

𝜕V

�((� − �) ⋅ �)

)
dS

= −
∬

𝜕V

� × p�dS

+
∬

𝜕V

� × ( ̄̄𝜏 ⋅ �)dS + �C∕O × �𝜌V .

�CV∕C + �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕b

�(� ⋅ �)dS

+
∬

𝜕B

�(� ⋅ �)dS

)

+ �C∕O ×

(
−
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

−𝜌
∬CS

�((� − �) ⋅ �)

)
dS

−
∬

𝜕b

p�dS +
∬

𝜕b

( ̄̄𝜏 ⋅ �)dS

− 𝜌
∬

𝜕b

�((� − �) ⋅ �))dS

−
∬

𝜕B

p�dS +
∬

𝜕B

(
̄̄𝜏 ⋅ �

)
dS

− 𝜌
∬

𝜕B

�((� − �) ⋅ �))dS

= −
∬CS

� × p�dS +
∬CS

� × ( ̄̄𝜏 ⋅ �)dS

−
∬

𝜕b

� × p�dS +
∬

𝜕b

� × ( ̄̄𝜏 ⋅ �)dS

−
∬

𝜕B

� × p�dS +
∬

𝜕B

� × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × �𝜌V .

body surface because � − � = 0 due to the no-flow boundary 
condition:

Using this new formulation, we can now derive the total 
moment acting on the body. The moment caused by pres-
sure and shear on the surface cutout around the body ( �B ) 
represents the net moment from the body on the fluid. 
The moment on the body from the fluid will, therefore, be 
equal and opposite. To find the total external moment on 
the body with respect to the origin, �O , we must also add 
in the moment caused by gravity. For a body with mass m 
and center of mass position �B∕O with respect to the origin 
(Fig. 1b),

We can solve for �O using Eq. (38):

Distributing �C∕O,

(38)

�CV∕C + �C∕O × 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

+ �C∕O ×

(
−
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

−𝜌
∬CS

�((� − �) ⋅ �)dS

−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

)

= −
∬CS

� × p�dS +
∬CS

� × ( ̄̄𝜏 ⋅ �)dS

−
∬

𝜕B

� × p�dS +
∬

𝜕B

� × ( ̄̄𝜏 ⋅ �)dS

�����������������������������������������������������

net pressure and shear torque from body

+�C∕O × �𝜌V .

�O = −

(
−
∬

𝜕B

� × p�dS +
∬

𝜕B

� × ( ̄̄𝜏 ⋅ �)dS

)

+ �B∕O × m�.

�O = −�CV∕C − �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

− �C∕O ×

(
−
∬CS

p�dS +
∬CS

( ̄̄𝜏 ⋅ �)dS

−𝜌
∬CS

�((� − �) ⋅ �)dS

−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

)

−
∬CS

� × p�dS

+
∬CS

� × ( ̄̄𝜏 ⋅ �)dS + �C∕O × �𝜌V + �B∕O × m�.
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and then grouping the surface integrals for CS:

To further simplify this equation, we can replace the 
body surface pressure and shear integrals by the net 
force that they have on the fluid in the CV, which is equal 
and opposite to the net fluid force acting on the body, 
� = −(−∬

𝜕B
p�dS + ∬

𝜕B
( ̄̄𝜏 ⋅ �)dS):

�O = −�CV∕C − �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

−
∬CS

−�C∕O

× p�dS +
∬CS

−�C∕O × ( ̄̄𝜏 ⋅ �)dS + �C∕O

× 𝜌
∬CS

�((� − �) ⋅ �)dS

− �C∕O ×

(
−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

)

−
∬CS

� × p�dS +
∬CS

� × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × �𝜌V + �B∕O × m�,

�O = −�CV∕C − �C∕O

× 𝜌

�
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

�

−
∬CS

(� − �C∕O) × p�dS

+
∬CS

(� − �C∕O) × ( ̄̄𝜏 ⋅ �)dS + �C∕O

× 𝜌
∬CS

�((� − �) ⋅ �)dS

− �C∕O ×

⎛⎜⎜⎜⎜⎜⎝

−
∬

𝜕B

p�dS +
∬

𝜕B

( ̄̄𝜏 ⋅ �)dS

���������������������������������������

Net pressure and shear force from body

⎞⎟⎟⎟⎟⎟⎠
+ �C∕O × �𝜌V + �B∕O × m�.

(39)

�O = −�CV∕C − �C∕O

× 𝜌

(
∬CS

�(� ⋅ �)dS +
∬

𝜕B

�(� ⋅ �)dS

)

−
∬CS

(� − �C∕O) × p�dS

+
∬CS

(� − �C∕O) × ( ̄̄𝜏 ⋅ �)dS

+ �C∕O × 𝜌
∬CS

�((� − �) ⋅ �)dS

+ �C∕O × � + �C∕O × �𝜌V + �B∕O × m�,

where the net fluid force on the body � is given by (Lentink 
2018):

A formulation for the moment on a body about its center 
of mass B, rather than about a theoretical origin, would be 
more physically meaningful and useful for interpreting the 
body’s rotational dynamics and stability. We, therefore, take 
one final step to apply the shift theorem for the moment of 
a set of forces (Mitiguy 2015), which enables us to find the 
moment on the body about B based on the moment on the 
body about the origin �O , the position of the body’s center 
of mass relative to the origin �B∕O , and the net force on the 
body �B , which includes the net fluid and gravitational 
forces on the body (Fig. 1b):

From Eqs. (39) and (41), we arrive at the general expres-
sion for the moment on the body with respect to its center 
of mass (Fig. 1c):
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